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Abstract—Companies may develop a set of similar software
variants, even though they do not necessarily have a Software
Product Line (SPL). They start constructing, marketing and
selling individual products, which they then modify, customize
and extend for different customers. To exploit existing software
variants for reuse (build a SPL) and facilitate its maintenance, a
feature model of these software variants must be built as a first
step. To do so, it is necessary to mine optional and mandatory
features in addition to associating it with its documentation. In
our previous work, we mined a set of feature implementations
as source code units from software variants. In this paper, we
propose the approach of documenting the mined features by
giving names and descriptions, based on the feature implemen-
tations and use-case diagrams of software variants. The novelty
of our approach is that we exploit commonality and variability
across software variants, at feature implementation and use-
cases levels, to apply Information Retrieval (IR) methods in
an efficient way. To validate our approach, we applied it on
Mobile media, Health Complaint-SPL and ArgoUML-SPL case
studies. The results of this evaluation showed that most of the
features had been documented correctly.

Keywords-Feature, Documentation, Comprehension, Soft-
ware Product Variants, Use-case Diagram, Formal Concept
Analysis, Relational Concept Analysis, Latent Semantic Index-
ing, Software Product Line.

I. INTRODUCTION

Software variants often evolve from an initial product,
developed for and successfully used by the first customer.
Mobile Media [1] is an example of such product evolution.
These product variants usually share some common features
and differ regarding others. As the number of features
and the number of software variants grows, it is worth
reengineering them into a Software Product Line (SPL) for
systematic reuse [2]. A SPL is a family of related software
variants that share some common artefacts (e.g., source code,
use-case diagram, design documents, etc. ) and differ in
relation to others [3]. SPLs are usually described with a
de facto standard formalism called Feature Model (FM) [4].
Feature model defines all the valid feature configurations.
The first step towards the migration of software variants
into SPL is to mine the FM of these variants. For obtaining
such a FM, common and optional features for software

variants have to be identified. This corresponds with identi-
fying the implementation of each feature and associating its
documentation (i.e., a feature name and description). In our
previous works [5] [4], we proposed an approach for feature
mining from the object-oriented source code of software
variants (REVPLINE approach1). REVPLINE allows the
mining of functional features as a set of Object-oriented
Units (i.e., OUs) (e.g., package, class, attribute, method or
method body elements). The implementation of each feature
may correspond to a huge number of OUs; the mined feature
must be documented. Therefore, we propose in this paper a
technique to document the mined feature implementations.
The goal of this documentation is to reflect feature roles at
the domain level. Additionally, for purposes of constructing
an FM and reusing existing features in other software,
each feature implementation that is presented to the human
user must have a meaningful name. In addition, feature
documentation is needed in order to understand existing
software variants and facilitate their maintenance. We rely
on the feature implementations and use-case diagrams of
software variants to propose naming and descriptions of the
identified feature implementation. Compared with existing
works proposing to document source code [6] [7] [8] [5]
etc. (cf. Section VII), the novelty of our approach is that we
exploit commonality and variability across software product
variants at feature implementation and use-case levels, to
apply IR methods in an efficient way in order to document
the mined implementation for each feature. Considering
commonality and variability across software product variants
allows us to cluster the use-cases and feature implementa-
tions into a disjoint minimal partition based on Relational
Concept Analysis (RCA); where each partition is disjoint
and consists of a minimal subset of feature implementa-
tions and the corresponding use-cases through exploiting
the commonalities and variabilities across software variants.
Then, we use Latent Semantic Indexing (LSI) to define a
similarity measure that enables us to identify which use-

1REVPLINE stands for REengineering Software Variants into Software
Product Line



cases characterize the name and description of each feature
implementation.

The remainder of this paper is structured as follows: Sec-
tion II briefly presents the background needed to understand
our proposal. Then section III shows an overview of the
feature documentation process. Next, section IV presents
the feature documenting process step by step. Section V
describes the experiments that were conducted to validate
our proposal. Then section VI discusses threats to the
validity of our approach. Section VII discusses the related
work; while finally, section VIII concludes and provides
perspectives for this work.

II. BACKGROUND

This section provides a glimpse of Formal Concept Anal-
ysis (FCA), Relational Concept Analysis (RCA), Latent
Semantic Indexing (LSI) and use-case diagram. It also
shortly describes the example that illustrates the remaining
sections of the paper.

A. Formal Concept Analysis (FCA) and Relational Concept
Analysis (RCA)

Galois lattices and concept lattices [9] are core structures
of a data analysis framework (Formal Concept Analysis)
for extracting an ordered set of concepts from a dataset,
called a formal context, composed of objects described by
attributes. The purpose of FCA is to automatically find
groups of objects (or entities) that share a common group
of attributes. Table I shows an example of a formal context
for describing animals by their properties. In the formal

Table I: A formal context for describing animals.
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flying squirrel × ×
bat × ×
ostrich ×
flamingo × × ×
sea-gull × × ×

context (cf. Table I) the objects are animals and attributes
are animal’s properties. Figure 1 shows the Hasse diagram of
the concept lattice structuring our animals. In this diagram,
extents and intents are presented in a simplified form: re-
moving up-down inherited attributes and down-up inherited
objects. In our approach, we will consider the AOC-poset
(for Attribute-Object-Concept poset), which is the sub-order
of (CK , ≤s), restricted to object-concepts and attribute-
concepts. AOC-posets scale much better than lattices. For
our example, it would correspond to the concept lattice
of Figure 1 deprived of Concept_0, Concept_3 and
Concept_4. The AOC-poset (cf. Figure 1) is composed of
concepts whose extent represents animal names and intent
represents animal properties. The interested reader can find
more information about FCA in [9].

Figure 1: The concept lattice for the formal context of Table
I.

RCA [10] is an iterative version of FCA in which, the
objects are classified, not only according to the attributes
they share, but also according to the relations between them.
Data are encoded into a relational context family (RCF),
which is a pair (K,R), where K is a set of formal (object-
attribute) contexts Ki = (Oi, Ai, Ii) and R is a set of
relational (object-object) contexts rij ⊆ Oi ×Oj , where Oi

(domain of rij) and Oj (range of rij) are the object sets of
the contexts Ki and Kj , respectively. The Relational Context
Family (RCF) corresponding to our example contains four
formal contexts (motion, animals, places, food) and four
relational context (lives, moves, offers and eatBy), illustrated
in Table II.

Table II: The RCF for animals.

Motion
fly
swim

Animals
eagle
bat
catfish

Places
mountain
cave
river

Food
mouse
insect
fish

lives mountain cave river
eagle ×
bat ×
catfish ×

moves fly swim
eagle ×
bat ×
catfish ×

offers mouse insect fish
mountain ×
cave ×
river ×

eatBy eagle bat catfish
mouse ×
insect ×
fish ×

An RCF is used in an iterative process to generate, at
each step, a set of concept lattices [10]. Firstly, concept
lattices are built, using the formal contexts only. Then, in
the following steps, a scaling mechanism translates the links
between objects into conventional FCA attributes and derives
a collection of lattices whose concepts are linked by relations
(cf. Figure 2). For example, the existential scaled relation
(which we will use in this paper) captures the following
information: if an object os is linked to another object ot,



then in the scaled relation, os will receive relational attributes
associated to concepts, which group ot with other objects.
This is used to form new groups, for example the group
(cf. Concept 5 in Figure 2) of Food, which are eaten by
a group of animals (such are grouped in Concept 1 of the
Animals). The steps are repeated until the lattices become
stable (i.e., when no more new concepts are generated). For
RCF in Table II, four lattices of the concept lattice family
are represented in Figure 2. The interested reader can find
more information about RCA in [10]. For applying FCA and
RCA we used the Eclipse eRCA platform2.

Figure 2: The concept lattice family of RCF in Table II.

B. Latent Semantic Indexing (LSI)

Information Retrieval (IR) refers to techniques that com-
pute textual similarity among different documents. The tex-
tual similarity is computed based on the occurrences of terms
within documents. If two documents share a large number
of terms, those documents are considered to be similar.
Different IR techniques have been proposed, such as Latent
Semantic Indexing (LSI) and Vector Space Model (VSM),
to compute textual similarity [11]. LSI is an advanced IR
method. The core of LSI is Singular Value Decomposition
(SVD) technique. This technique is used to mitigate noise
introduced by stop words (e.g., ”the”, ”an”, ”above”) and to
overcome two classical problems arising in natural language
processing: synonymy and polysemy [3]. The LSI procedure
can be divided into three steps:

• A corpus of documents is built after pre-processing
such as stop word removal and stemming performing.

• The term-document matrix is created by using the
corpus. The matrix’s columns correspond to the corpus
documents and rows represent terms that are extracted
from the documents. The matrix values indicate the
number of occurrences of a term in a document ac-
cording to a specific weighting scheme.

• Similarity among documents is calculated using cosine
similarity matrix.

The retrieval performance of the LSI model depends
on the term weighting, which indicates the nature of the

2http://code.google.com/p/erca/

relationship between a term and a document. The cosine
of the angle between the document and the query vector is
used as the numeric similarity between the vectors3. The
effectiveness of IR methods is usually measured by their
recall, precision and F-measure. For a given query, recall
is the percentage of correctly retrieved links to the total
number of relevant links, while precision is the percentage
of correctly retrieved links to the total number of retrieved
links. F-Measure defines a trade-off between precision and
recall, so that it gives a high value only in cases where both
recall and precision are high. All measures have values in
[0, 1]. If recall equals 1, all relevant links are retrieved.
However, some retrieved links might not be relevant. If pre-
cision equals 1, all retrieved links are relevant. Nevertheless,
relevant links might not be retrieved. If F-Measure equals 1,
all relevant links are retrieved. However, some retrieved links
might not be relevant [3].

C. Use-case diagram through our illustrative example

In our work, we rely on the same assumption used in the
work of [12] stating that each use-case represents a feature.
The use-case diagrams are used to document the mined
feature implementation by giving name and description
according to the use-case name and its description. Use-
case diagrams appear early within a UML-based develop-
ment, structured over the concepts of actors and use-cases
to capture the user requirements of an application [13].
According to [12], a use-case is the ”specification of a set of
actions performed by a system, which yields an observable
result that is, typically, of value for one or more actors
or other stakeholders of the system”. Figure 3 gives an
example of two use-case diagrams for two applications of
Mobile Tourist Guide (MTG). As an illustrative example, we
consider four software variants of MTG. These applications
allow a user to inquire about some tourist information
through the mobile device. MTG 1 supports core MTG
functionalities: view map, place marker on a map, view
direction, launch Google map and show street view. MTG 2
has the core MTG functionalities and a new functionality
called download map from Google. MTG 3 has the core
MTG functionalities and a new functionality called show
satellite view. MTG 4 supports search for nearest attrac-
tion, show next attraction and retrieve data functionalities,
together with the core ones.

III. THE FEATURE DOCUMENTATION PROCESS

Our goal is to document the mined feature implemen-
tations from a collection of software variants. Based on
existing use-case diagrams of software variants, we docu-
ment the mined features by combining both use-cases and
feature implementations. Feature documentation processes
targets to identify which use-cases characterize the name

3For the purpose of our approach, we developed our LSI tool. Available
at https://code.google.com/p/lirmmlsi/

http://code.google.com/p/erca/
https://code.google.com/p/lirmmlsi/


Figure 3: The use-case diagram for MTG 3 and MTG 4.

and description of each feature implementation. We rely on
lexical similarity to identify those use-cases that characterize
the name and description of each feature implementation. IR
technique’s performance and efficiency depends on the size
of the search space. In order to apply LSI, we take advantage
of the commonalities and variabilities across software vari-
ants for group feature implementations and the correspond-
ing use-cases in the software family into disjoint, minimal
partitions. As an example of disjoint minimal partition; the
use-cases and feature implementations that are common to
all software variants will cluster together as one cluster
(i.e., minimal search space). We called each disjoint minimal
partition a hybrid block. After reducing search space into a
set of hybrid blocks, we rely on the textual similarity to
identify, from each hybrid block, which use-cases depict
the name and description of each feature implementation.
After identifying the textual similarity between use-cases
and feature implementations, we group those elements as
a set of clusters based on the textual similarity.

For a product variant, our approach takes as input a set
of use-cases that the product variant supports and a set of
mined feature implementations. Each use-case is identified
by its name and description. A use-case description is given
in a natural language. This information about the use-case
represents a domain knowledge that is usually available from
software variants documentation (i.e., requirement model).
In our work, the use-case description consists of a short
paragraph. For example, retrieve data use-case of Figure
3 is described in the following paragraph, ”the tourist can
retrieve information and a small image of the attraction
through his/her mobile phone. In addition, the tourist can
store the current view of the map to the mobile phone”. Our
approach gives as output for each feature implementation,
a name and description based on the use-case name and
description. Each use-case is mapped into a functional
feature based on our assumption. In the case of there being
two or more use-cases have a relation with the single
feature implementation, we consider all relevant use-cases

as documentation for this feature implementation.
The feature documentation process takes the variants’ use-

cases and the mined feature implementations as its inputs.
The first step of this process aims at identifying hybrid
blocks based on RCA (cf. Section IV-A). In the second step,
we rely on LSI to determine the similarity between use-
cases and feature implementations (cf. Section IV-B). This
similarity measure is used to identify sets of clusters based
on FCA. Each cluster identifies the name and description for
feature implementation (cf. Section IV-C). Figure 4 shows
our feature documentation process.

Figure 4: The feature documentation process.

In our work we consider RCA and FCA as a clustering
method. RCA links each cluster of use-cases with the corre-
sponding cluster of feature implementations by exploiting
commonalities and variabilities across software variants.
The concept lattice family facilitates the comprehension
of the clusters and their relations and provides a better
visualization. LSI had positive results in addressing com-
prehension and maintenance tasks, such as feature location
[5], recovery of traceability links between source code and
different software artifacts [14] [2] [15], naming of software
components [6], and labelling of software source code [16].

IV. FEATURE DOCUMENTATION STEP BY STEP

In this section, we describe the feature documentation pro-
cess step by step. According to our approach, we identify the
feature name and its description in three steps: i) identifying
hybrid blocks of use-cases and feature implementations via
RCA, ii) measuring the lexical similarity between use-cases
and feature implementations via LSI and iii) identifying the
feature name and its description via FCA as detailed in the
following.



A. Identifying Hybrid Blocks of Use-cases and Feature
Implementations via RCA

We utilise the existing use-case diagrams of software
variants to document the mined feature implementations
from those variants. In order to apply the LSI in an efficient
way, we need to reduce the search space for use-cases
and feature implementations. Starting from existing feature
implementations and use-cases we need to cluster these
elements into disjoint minimal partitions (i.e., hybrid blocks)
to apply the LSI. Reducing the search space is based on the
commonalities and variabilities of software variants. To do
so, there is a need to exploit commonalities and variabilities
across software variants. To achieve this objective, the RCA
completes the first step of the feature documentation pro-
cess. Using RCA to reduce the search space, the common
use-cases and feature implementations among all software
variants appear together as one cluster. The use-cases and
feature implementations that are shared among a set of
software variants, but not all variants, appear together as
one cluster. Also the use-cases and feature implementations
that are unique for a single variant appear together as one
cluster.

The Relational Context Family (RCF) corresponding to
our approach contains two formal contexts and one relational
context, illustrated in Table III. The first formal context
represents the use-case diagrams. The second formal context
represents feature implementations. In the formal context of
use-case diagrams, the objects are use-cases and attributes
are software variants. In the formal context of feature
implementations, the objects are feature implementations
and attributes are software variants. The relational context
(i.e., appear-with) indicates which use-case appears with
which feature implementation across software variants.

Table III: The RCF for documenting features.
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View Map x x x x
Launch Google Map x x x x
View Direction x x x x
Show Street View x x x x
Place Marker on Map x x x x
Download Map x
Show Satellite View x
Show Next Attraction x
Search For Nearest Attraction x
Retrieve Data x
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Feature Implementation 1 x x x x
Feature Implementation 2 x x x x
Feature Implementation 3 x x x x
Feature Implementation 4 x x x x
Feature Implementation 5 x x x x
Feature Implementation 6 x
Feature Implementation 7 x
Feature Implementation 8 x
Feature Implementation 9 x
Feature Implementation 10 x
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View Map x x x x x
Launch Google Map x x x x x
View Direction x x x x x
Show Street View x x x x x
Place Marker on Map x x x x x
Download Map x
Show Satellite View x
Show Next Attraction x x x
Search For Nearest Attraction x x x
Retrieve Data x x x

For RCF in Table III, two lattices of the concept lat-
tice family are represented in Figure 5. As an example
of the hybrid block in Figure 5, we can see a set of
use-cases (cf. Concept 1 of the Use case Diagrams lat-
tice) always appears with a set of feature implementa-
tions (cf. Concept 6 of the Feature Implementations lattice)
based on software configurations at use-case and feature
implementation levels. As shown in Figure 5, RCA allows
us to reduce the search space by exploiting commonalities
and variabilities across software variants.

Figure 5: The concept lattice family of RCF in Table III.

In our work, we are exploring concept lattice family
and filtering them to get a set of hybrid blocks from
bottom to top4 (i.e., from the largest search space to smaller
search space). RCF for feature documentation is generated
automatically from use-case diagrams and the mined feature

4https://code.google.com/p/fecola/

https://code.google.com/p/fecola/


implementations of software variants5.

B. Measuring the Lexical Similarity Between Use-cases and
Feature Implementations via LSI

Based on the previous step, each hybrid block consists
of a set of use-cases and a set of feature implementations.
We need to identify from each hybrid block, which use-
cases characterize the name and description for each feature
implementation. To do so, we utilise the textual similarity
between use-cases and feature implementations. This simi-
larity measure is calculated using LSI. We rely on the fact
that a use-case corresponding to the feature implementation
is lexically closer to this feature implementation than to the
rest of feature implementations.

To compute similarity between use-cases and feature
implementation in the hybrid blocks, we proceed in three
steps: building the LSI corpus, building the term-document
matrix and the term-query matrix for each hybrid block and,
at lastly, building the cosine similarity matrix.

1) Building the LSI corpus: In order to apply LSI, we
build a corpus that represents a collection of documents and
queries. In our case, each use-case name and description
in the hybrid block represents a query and each feature
implementation represents a document (cf. Figure 6).

Figure 6: Constructing a raw corpus from Hybrid block.

Each feature implementation contains a set of Object-
oriented Units (OUs) such as packages, classes, attributes,
methods or method body elements. Each feature implemen-
tation is represented by one document. Each document con-
tains all OUs names that form this feature implementation.
In our work, we store the complete name of the OU, due to
the importance of a complete OU name. Regardless of word
location (first, middle or last) through OU name, we store

5https://code.google.com/p/rcafca/

all words in the document. For example, for the OU name
ManualTestWrapper all words are important {manual, test
and wrapper}. The same for all OU names (e.g., package,
class, attribute, method, local variable, method invocation or
attribute access), the complete name is stored in the docu-
ment. Each feature implementation is mapped into a docu-
ment with all OU names. For the query, our approach creates
a document for each use-case. This document contains the
use-case name and its description. To be processed, the
document and query must be normalized (e.g., all capitals
turned into lower case letters, articles, punctuation marks or
numbers removed). The normalized document is generated
by analyzing the OU names of feature implementation. All
OU names are split into terms and at last, word stemming
is performed. The same procedure is followed to manipulate
the use-case and its description to get the query document.
The most important parameter of LSI is the number of term-
topics (i.e., k-Topics) chosen. A term-topic is a collection of
terms that co-occur often in the documents of the corpus,
for example {user, account, password, authentication}. Due
to the nature of language use, the terms that form a topic
are often semantically related. In our work, the number of
k-Topics are equal to the number of feature implementations
for each corpus.

2) Building the term-document and the term-query matri-
ces for each hybrid block: All hybrid blocks are considered
and the same processes applied to them. The term-document
matrix is of size m × n, where m is the number of terms
extracted from feature implementations and n is the number
of feature implementations (i.e., documents) in a corpus. The
matrix values indicate the number of occurrences of a term
in a document, according to a specific weighting scheme
(cf. Table IV). The term-query matrix is of size m × n,
where m is the number of terms that are extracted from
use-cases and n is the number of use-cases (i.e., queries) in
a corpus. An entry of term-query matrix refers to the weight
of ith term in the jth query. Terms for both matrices are the
same because they are extracted from the same hybrid block
(cf. Table IV). Table IV shows the term-document and the
term-query matrices of the hybrid block of Concept 1 from
Figure 5.

Table IV: The term-document and the term-query matrices
of Concept 1 from Figure 5.
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device 1.0 0.0 0.0 0.0 1.0
direction 0.0 0.0 0.0 6.0 0.0
google 1.0 0.0 0.0 0.0 0.0
launch 4.0 0.0 0.0 0.0 0.0
map 1.0 2.0 0.0 0.0 4.0
marker 0.0 6.0 0.0 0.0 0.0
mobile 1.0 0.0 0.0 0.0 1.0
place 0.0 3.0 0.0 0.0 0.0
show 0.0 0.0 2.0 0.0 0.0
street 0.0 0.0 5.0 0.0 0.0
tourist 1.0 1.0 1.0 1.0 1.0
view 0.0 0.0 1.0 2.0 5.0

The term-document matrix
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device 1.0 0.0 0.0 0.0 1.0
direction 0.0 0.0 0.0 8.0 0.0
google 3.0 0.0 0.0 0.0 0.0
launch 3.0 0.0 0.0 0.0 0.0
map 2.0 2.0 1.0 1.0 5.0
marker 0.0 3.0 0.0 0.0 0.0
mobile 1.0 0.0 0.0 0.0 1.0
place 0.0 3.0 0.0 0.0 0.0
show 0.0 0.0 3.0 0.0 0.0
street 0.0 0.0 5.0 0.0 0.0
tourist 1.0 1.0 1.0 1.0 1.0
view 0.0 0.0 1.0 3.0 5.0

The term-query matrix

https://code.google.com/p/rcafca/


In the term-document matrix, the direction term appears
6 times in the document Feature Implementation 4. In the
term-query matrix, the direction term appears 8 times in the
query view direction. The term-document matrix shows all
terms of corpus and gives the number of occurrences of each
term in each document.

3) Building the cosine similarity matrix: Similarity be-
tween use-cases and feature implementations in each hybrid
block is described by a cosine similarity matrix whose
columns represent vectors of feature implementations and
rows represent vectors of use-cases: documents as columns
and queries as rows. The textual similarity between docu-
ments and queries is measured by the cosine of the angle
between their corresponding vectors [11]. The k-Topics for
LSI in our approach are equal to the number of feature
implementations in each hybrid block. In this example, K
value is equal to 5. Table V shows the cosine similarity
matrix of Concept 1 (i.e., hybrid block) from Figure 5.

Table V: The cosine similarity matrix of Concept 1.
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Launch Google Map 0.861933577 0.0137010 0.0 0.0 0.152407
Place Marker on Map 0.01114798 0.9480070 0.0 0.0 0.085939
Show Street View 0.004088722 0.0051128 0.98581691 0.00571 0.070920
View Direction 0.00296571 0.0037085 0.0069484 0.999139665 0.108597
View Map 0.114676597 0.0627020 0.039159941 0.070025418 0.994111

C. Identifying Feature Name and Description via FCA

Based on the cosine similarity matrix we use FCA to
identify, from each hybrid block of use-cases and feature
implementations, which are similar elements. To transform
the (numerical) cosine similarity matrices of the previous
step into (binary) formal contexts, we use 0.70 as a thresh-
old. 0.70 is currently used for cosine similarity (after testing
many thresholds). This means that only pairs of use-cases
and feature implementations having a calculated similarity
greater than or equal to 0.70 are considered similar. Table
VI shows the formal context obtained by transforming the
cosine similarity matrix corresponding to the hybrid block
of Concept 1 from Figure 5.

Table VI: Formal context of Concept 1.
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Launch Google Map x
Place Marker on Map x
Show Street View x
View Direction x
View Map x

In this formal context, the use-case ”Launch Google
Map” is linked to the feature implementation ”Feature
Implementation 1” because their similarity equals 0.86,
which is greater than the threshold. However, the use-case
”View Direction” and the feature implementation ”Feature
Implementation 5” are not linked because their similarity
equals 0.10, which is less than the threshold. The resulting
AOC-poset (cf. Figure 7) is composed of concepts whose
extent represents the use-case name and intent represents
the feature implementation.

Figure 7: The documented features from Concept 1.

For the MTG example, the AOC-poset of Figure 7 shows
five concepts (that correspond to five distinct features) mined
from a single hybrid block (Concept 1 from Figure 5). The
same feature documentation process is used for each hybrid
block.

V. EXPERIMENTATION

This section presents the case studies in which we apply
our approach. In addition, it presents the feature documen-
tation results.

A. Case studies

To validate our approach, we ran experiments on three
Java open-source softwares: Mobile Media software vari-
ants6, Health complaint-SPL7 and ArgoUML-SPL8. We used
8 variants for Mobile Media, 5 variants for Health complaint-
SPL and 6 variants for ArgoUML-SPL. The selected soft-
ware variants contain all the features of each family. Mobile
Media variants [1], Health complaint-SPL9 and ArgoUML-
SPL [17] are well documented. Their source code, use-case
diagram and feature model are available for comparison
with our results and validation of our proposal10. Feature
implementation sizes vary from one case study to another
(Mobile media (small), Health complaint-SPL (medium)
and ArgoUML-SPL (large)). For example, the size of the
cognitive support feature of ArgoUML case study is 16,319
lines of code (LOC), while the size of play music feature
of Mobile media case study is 709 LOC. Every case study

6http://www.ic.unicamp.br/∼tizzei/mobilemedia/
7http://ptolemy.cs.iastate.edu/design-study/
8http://argouml-spl.tigris.org/
9http://www.ic.unicamp.br/∼tizzei/phc/jss2013/
10Feature implementations, use-case diagrams and use-case descriptions

for each case study are available on our web site http://www.lirmm.fr/
CaseStudy

http://www.ic.unicamp.br/~tizzei/mobilemedia/
http://ptolemy.cs.iastate.edu/design-study/
http://argouml-spl.tigris.org/
http://www.ic.unicamp.br/~tizzei/phc/jss2013/
http://www.lirmm.fr/CaseStudy
http://www.lirmm.fr/CaseStudy


is different from other case studies in terms of the number
of use-cases and the mined feature implementations. The
Mobile media case study is classified as software product
variants while the Health complaint-SPL and ArgoUML-
SPL are classified as a software product line.

Mobile media is a Java-based open source application
that manipulates photo, music, and video on mobile devices,
such as mobile phones [18]. Table VII shows and describes
Mobile media variants by their features.

Table VII: Mobile media software variants.
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S1 x x x x x
S2 x x x x x x
S3 x x x x x x x x x
S4 x x x x x x x x x x x
S5 x x x x x x x x x x x x
S6 x x x x x x x x x x x x x x
S7 x x x x x x x x x x x x x x x
S8 x x x x x x x x x x x x x x x x x

Health complaint is a Java-based open source web appli-
cation that manages health related records and complaints.
Health complaint allows citizens to report complaints related
to public health via the Internet. The types of complaints
encompass food, animal, drug, and special complaints. Table
VIII shows and describes Health complaint-SPL software
applications by their features.

Table VIII: Health complaint-SPL software applications.
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S2 x x x x x x x x x x
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ArgoUML is a Java-based, open source tool, widely used
for designing systems in UML. The FM for the ArgoUML-
SPL as manually designed by the authors of ArgoUML-SPL
is presented in [17]. It contains 10 features. Table IX shows
and describes ArgoUML-SPL software applications by their
features.

Table IX: ArgoUML-SPL software applications.
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B. Result
Table X summarizes the results obtained from document-

ing the mined features of Mobile media, Health complaint-
SPL and ArgoUML-SPL case studies.

Table X: Features documented from Mobile media, Health
complaint-SPL and ArgoUML-SPL case studies.

Evaluation Metrics

# Feature names for each case study
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I Mobile media
1 Add Album HB 1 5 95% 100% 50% 66%
2 Add Photo HB 1 5 79% 100% 50% 66%
3 Delete Album HB 1 5 93% 100% 50% 66%
4 Delete Photo HB 1 5 99% 100% 50% 66%
5 View Photo HB 1 5 99% 100% 100% 100%
6 Capture Media HB 2 2 81% 100% 100% 100%
7 Play Video HB 2 2 90% 100% 100% 100%
8 Play Music HB 3 1 97% 100% 100% 100%
9 Receive Photo HB 4 2 100% 100% 50% 66%
10 Send Photo HB 4 2 97% 100% 50% 66%
11 Copy Photo HB 5 1 94% 100% 100% 100%
12 Count Photo HB 6 3 92% 100% 100% 100%
13 Edit Label HB 6 3 98% 100% 100% 100%
14 View Sorted Photos HB 6 3 91% 100% 100% 100%
15 Exception Handling HB 7 1 100% 100% 100% 100%
16 Set Favourites HB 8 2 100% 100% 50% 66%
17 View Favourites HB 8 2 100% 100% 50% 66%
II Health Complaint

1 Animal complaint specification HB 1 5 92% 100% 100% 100%
2 Drug complaint specification HB 1 5 99% 100% 100% 100%
3 Food complaint specification HB 1 5 99% 100% 100% 100%
4 Special complaint specification HB 1 5 89% 100% 100% 100%
5 Specify complaint HB 1 5 97% 100% 100% 100%
6 Register tables HB 2 2 93% 100% 100% 100%
7 Register new employee HB 2 2 99% 100% 100% 100%
8 Change logged employee HB 3 5 78% 100% 100% 100%
9 Login HB 3 5 85% 100% 100% 100%
10 Update complaint HB 3 5 99% 100% 100% 100%
11 Update employee HB 3 5 97% 100% 100% 100%
12 Update health unit HB 3 5 97% 100% 100% 100%
13 Find Information HB 4 3 92% 100% 100% 100%
14 Query information HB 4 3 95% 100% 100% 100%
15 Receive alerts via feeds HB 4 3 82% 100% 100% 100%
III ArgoUML

1 Class diagram HB 1 2 95% 100% 100% 100%
2 Diagrams HB 1 2 89% 100% 100% 100%
3 Login HB 2 2 99% 100% 100% 100%
4 Activity diagram HB 2 2 99% 100% 100% 100%
5 Cognitive support HB 3 2 85% 100% 50% 66%
6 State diagram HB 3 2 85% 100% 50% 66%
7 use-case diagram HB 4 2 99% 100% 100% 100%
8 Deployment diagram HB 4 2 99% 100% 100% 100%
9 Collaboration diagram HB 5 2 90% 100% 50% 66%
10 Sequence diagram HB 5 2 93% 100% 50% 66%
U-FI (SV) ††: The similarity value between use-case and the relevant feature implementation.

Throughout our work, each use-case name and descrip-
tion represents a query and each feature implementation
represents a document. This can also be vice versa. In
practice, both cases give the same result in terms of the
retrieved elements. For the three case studies presented, we
can see that the recall values are 100% of all features that
are documented. The recall values are an indicator for the
accuracy of our approach. From recall values, we can see
that for each use-case, there is a correctly retrieved feature
implementation. Precision values also are high. The values
of precision are between [50% - 100%]. F-Measure values
also are high. F-Measure values rely on precision and recall
values. The values of F-Measure are between [66% - 100%]
for the documented features. In this experimentation, we
use different case studies. Fortunately, in the three case
studies, there is a common vocabulary between use-cases
and feature implementations. In our approach, each use-case
is mapped into a functional feature. Fortunately, there is no



limitation of our approach in cases with more than one use-
case mapped into a feature. Based on the textual similarity,
we consider the related use-cases as a description of this
feature implementation.

Our results can be interpreted on the basis that reducing
the search space for use-cases and feature implementations
across software variants is the reason behind this result. In
most cases, the contents of hybrid blocks are in the range
of [1 - 5] use-cases and feature implementations. A further
reason for this result is the common vocabulary used in the
use-case descriptions and feature implementations, which
helped us to have good results from the lexical similarity,
for those features in which precision value is not 100%,
such as sequence and collaboration diagrams. The reason
behind this result is that a feature implementation can have
a common vocabulary with many use-case descriptions.

The column (k-Topics) in Table X represents the number
of topics. We use it to determine the number of topics in
each hybrid block. In our approach, the number of topics
is equal to the number of feature implementations in each
hybrid block. The column (Feature names for each case
study) in Table X represents the proposed feature names for
each case study. The proposed feature name for each feature
implementation has the same use-case name.

Comparing our results with the feature names that are
included in the FM, we found that our results are very
close to the feature names in FM. For example, in the
FM of Mobile media [18] there is a feature called sorting,
the proposed name of this feature, by our approach, is
view sorted photos and its description is ”the device sorts
the photos based on the number of times photo has been
viewed”.

In our work, we represent the similarity values between
the use-cases and feature implementations. The results are
represented as a directed graph. Use-case and feature im-
plementation are represented as vertices and the similarity
links as edges. The degree of similarity appears along the
edges of the graph11.

VI. THREATS TO VALIDITY

As a limitation of our approach, developers might not
use the same vocabularies to name OUs and use-cases
across software variants. This means that lexical similarity
may be not reliable (or should be improved with other
techniques) in all cases to identify the relationship between
use-case and feature implementation. Furthermore, there is
a limitation using FCA as clustering technique. FCA deals
with binary formal context (1, 0). When we transform the
(numerical) cosine similarity matrices into (binary) formal
contexts, we use a threshold. So if the similarity value
between query and document is greater than or equal the
0.70 the two documents are considered similar. By contrast,

11www.lirmm.fr/∼seriai/encadrements/theses/rafat/index.php?n=T.V

if the similarity value is less than the threshold (i.e., 0.69)
the two documents are considered not similar. FCA deals
with discrete values (0, 1). This affects on the quality of the
result, where the similarity value 0.99 is equal to 0.70 and
0.69 is equal to 0.

VII. RELATED WORK

Ziadi et al. [8] propose an approach to identify features
across software variants. In their work they propose man-
ually creating the feature names. In our previous works
[5] [4] [3], we presented an approach for feature mining
in a collection of software product variants. We manually
associated feature names to the feature implementations,
based on the study of the content of each implementation
and on our knowledge on software.

An inclusive survey about approaches recovering feature-
to-code traceability links in single software are proposed
in [15]. The identification of relationship (i.e., traceability
links) between use-case diagrams and source code of single
software is the subject of the work by Grechanik et al. [14].
In our work, we identify the relationship between feature
implementations and the use-case diagrams of a collection
of software variants. Xue et al. [2] propose an automatic
approach to identify the traceability link between a given
collection of features and a given collection of source code
variants. They thus consider feature descriptions as an input.

Kuhn et al. [6] present a lexical approach that uses the
log-likelihood ratios of word frequencies to automatically
provide labels for components of single software. Their
approach can be applied i) to compare components with
each other, ii) to compare a component against a norma-
tive corpus, and iii) to compare different revisions of the
same component. Kebir et al. [7] propose an approach to
identify components from object-oriented source code of
single software. Their approach proposed allocating names
to the components based on the class names. Their work
identifies component names in three steps: extracting and
tokenizing class names from the identified cluster, weighting
words and constructing the component name by using the
strongest weighted tokens. De Lucia et al. [16] propose an
approach for source code labelling, based on IR technique, to
identify relevant words in the source code of single software.
They applied various IR methods to extract terms from class
names by means of some representative words, with the aim
of facilitating their comprehension or simply to improve
visualization. Falleri et al. [19] proposed a wordNet-like
approach to extract the structure of single software by using
the relationships among identifier names (e.g., packages,
classes, methods, variables, etc. ). The approach considers
Natural Language Processing techniques, which consist of
tokenization process (straightforward decomposition tech-
nique by word markers, e.g., case changes, underscore, etc. ),
part of speech tagging, and rearranging order of terms by
the dominance order of term rules, based on part of speech.

www.lirmm.fr/~seriai/encadrements/theses/rafat/index.php?n=T.V


Davril et al. [20] present an approach to constructing FMs
from product descriptions. They developed a cluster-naming
process that involved selecting the most frequently occurring
term from amongst all of the feature descriptors in the
cluster using the Stanford Part-of-Speech tagger. Braganca
and Machado [12] describe an approach for automating
the process of transforming UML use-cases to FMs. Their
approach explores the include and extend relationships be-
tween use-cases to discover relationships between features.
In their work, each use-case is mapped to a feature.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an approach for documenting
the mined feature implementations of a set of software
variants. We exploit commonalities and variabilities across
software variants at feature implementation and use-case
levels to apply IR methods in an efficient way in order to
document their features. We have implemented our approach
and evaluated its produced results on Mobile media, Health
Complaint-SPL and ArgoUML-SPL case studies. The results
of this evaluation showed that most of the features were
documented correctly. Regarding future work, we plan to
use search based algorithms for clustering the use-cases
and relevant feature implementation together instead of
FCA. Also In addition, we plan to use part of speech
tagging to document the mined features directly from feature
implementations. Finally, we plan to use the mined and
documented features (i.e., mandatory and optional features)
to automate the building of the feature model.
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