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Abstract

Software architectures are subject to several types of change during the
software lifecycle (e.g. adding requirements, correcting bugs, enhancing per-
formance). The variety of these changes makes architecture evolution man-
agement complex because all architecture descriptions must remain consis-
tent after change. To do so, whatever part of the architectural description
they affect, the effects of change have to be propagated to the other parts.
The goal of this paper is to provide support for evolving component-based ar-
chitectures at multiple abstraction levels. Architecture descriptions follow an
architectural model named Dedal, the three description levels of which corre-
spond to the three main development steps — specification, implementation
and deployment. This paper formalizes an evolution management model
that generates evolution plans according to a given architecture change re-
quest, thus preserving consistency of architecture descriptions and coherence
between them. The approach is implemented as an Eclipse-based tool and
validated with three evolution scenarios of a Home Automation Software
example.
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1. Introduction

Component-based software development (Cbsd) promotes a reuse-based
approach to defining, implementing and composing loosely coupled indepen-
dent software components into whole software systems [1]. While component
reuse is crucial to shorten large-scale software systems development time,
handling evolution in such processes is a significant issue [2]. Indeed, soft-
ware systems have to evolve to extend their functionalities, correct bugs,
improve performance and quality, or adapt to their environment. While un-
avoidable, software changes may engender several inconsistencies and system
dysfunction if not analyzed and handled carefully. In turn, an ill-mastered
evolution engenders software degradation, the loss of its evolvability and then
its phase-out [3].

A famous problem of software evolution is software architecture ero-
sion [4, 5]. It arises when modifications of the software implementation
violate the design principles captured by its architecture. To increase confi-
dence in reuse-centered, component-based software systems, all architecture
descriptions must remain consistent and coherent with each other after every
change.

While a lot of work has been dedicated to architectural modeling and
evolution, there still is a lack of means and techniques to tackle architectural
inconsistencies, and erosion in particular. Indeed, most existing approaches
to architecture evolution hardly support the whole life-cycle of component-
based software and only enable evolution of early stage models by propagat-
ing change impact to runtime models while evolution of runtime models are
not fully dealt with, thus increasing the risks of architecture erosion.

This paper proposes an approach and its implementation to automatically
manage component-based architecture evolution at multiple abstraction lev-
els in a manner that preserves architecture consistency and coherence all
along the software lifecycle. The approach is based on the Dedal [6, 7] archi-
tectural model that explicitly models architectures at three abstraction levels,
each corresponding to one of the three major steps of Cbsd – specification,
implementation and deployment, thus granting a full evolution management
process. Given a change request at any abstraction level, it transforms Dedal
models into B formal models to analyze the requested change and generates
an evolution plan that guarantees the consistency of architecture descrip-
tions and the coherence between them. The proposed approach is centered
on a formal evolution management model that includes the generated B mod-
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els, the architecture properties to preserve and a set of evolution rules. It
is implemented as an Eclipse-based tool that generates B models from dia-
grammatic Dedal models and uses our specific solver to resolve architecture
evolution. The overall approach is illustrated with a Home Automation Soft-
ware case-study.

The remainder of this paper outlines as follows: Section 2 presents the
background of this work. Section 3 presents our proposal to tackle multi-level
architecture evolution (i.e. the evolution of architecture definitions composed
of multiple description levels) while Section 4 presents the implemented tool
and experiments on three evolution scenarios. Section 5 discusses related
work and finally, Section 6 concludes the paper and discusses future work.

2. Background

Our approach combines the use of Dedal to model software architectures
and B to support automated analysis and verification. This section briefly
introduces these languages.

2.1. The Dedal architecture model

2.1.1. Component-based software development by reuse

Cbsd follows the reuse-in-the-large principle. Reusing existing (off-the-
shelf) software components [8] therefore becomes the central concern during
development. Traditional software development processes cannot be used as
is and must be adapted to component reuse [1]. Figure 1 illustrates our vision
of such a development process which is classically divided in two:

• the component development process (referred to as software component
development for reuse), which will not be detailed in the sequel. This
development process produces components that are stored in reposito-
ries for later use by the software development process.

• the software development process (referred to as software development
by component reuse) that describes how previously developed software
components can be used for software development (and how this reuse
impacts the way software is built).

Dedal is a novel architectural model and Adl [6, 7] that targets reuse-
centered development. It covers the whole software development by com-
ponent reuse life-cycle. The main idea of Dedal is to build a concrete ar-
chitecture composed of stored and indexed components that are found in a
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Figure 1: Dedal reuse-centered development process [7]

component repository as candidates to satisfy the design decisions specified
in an intended architecture specification. The resulting concrete architecture
can then be instantiated and deployed in multiple contexts. Therefore, Dedal
proposes a three-step approach for specifying, implementing and deploying
software architectures.

2.1.2. Dedal abstraction levels

To illustrate the concepts of Dedal, we propose to model a home automa-
tion software (Has) that manages comfort scenarios, which automatically
controls buildings’ lighting and heating depending on time and ambient tem-
perature. For this purpose, we propose an architecture with an orchestrator
component that interacts with the appropriate devices to implement the de-
sired scenario.

The abstract architecture specification is the first level of software archi-
tecture descriptions. It is abstract: it represents the architecture as imagined
by the architect to meet the requirements of the future software. In Dedal,
the architecture specification is composed of component roles, their connec-
tions and the expected global behavior. Component roles are abstract and
partial component type specifications. Consequently, the provided interfaces
of each role are to be connected to compatible required interfaces. Compo-
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nent roles are identified by the architect in order to search for and select
corresponding concrete components in the next step. Figure 2-a shows a
possible Has architecture specification. In this specification, five component
roles are identified. A component playing the HomeOrchestrator role controls
four components playing the Light, Time, Thermometer and CoolerHeater
roles.

Figure 2: Architecture specification, configuration and assembly of the HAS

The concrete architecture configuration is an implementation view of soft-
ware architectures. It results from the selection of existing component classes
in component repositories. Thus, an architecture configuration lists and con-
nects the concrete component classes that compose a specific version of the
software. In Dedal, component classes can either be primitive or compos-
ite. A primitive component class encapsulates executable code. A composite
component class encapsulates an inner architecture configuration (i.e. a set
of connected component classes which may, in turn, be primitive or compos-
ite). A composite component class exposes a set of interfaces corresponding
to the unconnected interfaces of its inner components. Figure 2-b shows a
possible architecture configuration for the Has example as well as an example
of an AirConditioner composite component and its inner configuration. As
illustrated in this example, a single component class may realize several roles
from the architecture specification as with the AirConditioner component
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class, which realizes both the Thermometer and CoolerHeater roles. Con-
versely, a component class may provide more services than those listed in
(its role in) the architecture specification as with the Lamp component class
which provides an extra service to control the intensity of light. These extra
interfaces may be left unconnected.

The instantiated architecture assembly describes software at runtime and
holds information about its internal state. The architecture assembly models
an instantiation of its architecture configuration. It lists the instances of the
component and connector classes that compose the deployed architecture at
runtime and their assembly constraints (such as the maximum number of
connected instances). Component instances document how the component
classes from an architecture configuration are instantiated in the deployed
software. Each component instance has an initial and a current state defined
by a list of valued attributes. Figure 2-c shows an instantiated architecture
assembly for the Has example.

2.2. The B modeling language

B [9, 10] is a formal modeling language and a proof-based development
method for software systems. The principle of such method is to start from a
very abstract model of the system and then gradually refine it. Initially de-
signed by Abrial in 1985 to specify critical systems, B was rapidly adopted by
industry and used in many case studies such as the Meteor project [11] for
controlling train traffic and the Pci protocol [12]. B is also widely used and
studied in academia, mainly as a formal modeling language for verification,
validation and model-checking.

2.2.1. Expressiveness and semantics

B is based on Zermelo-Fraenkel (ZF) set theory and first order logic lan-
guage. The B notation is very similar to mathematical language and includes
all standard logical connectors (e.g. ∧,∨,⇒), set-theoretic operations (e.g.
∈,∪), closure and specific relations like injective (� ), surjective (� ) and
bijective ( �� ) functions. B also supports sequences and the basic boolean
(BOOL), integer (INTEGER) and natural (NAT ) types.

B specifications are composed of abstract machines similar to modules
(cf. Figure 3). They are defined independently and can be reused as mod-
ules and refined to obtain more concrete models. An abstract machine is
divided into a declarative part and a dynamic part. The declarative part
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contains the declaration of sets (SETS ), constants (CONSTANTS ), vari-
ables (VARIABLES ) which represent the state of the machine and invariant
properties (INVARIANT ) related to variables. Optionally, it is also possi-
ble to set definitions (DEFINITIONS ) (like macros). Definitions are useful
to define extensive sets and parametrized predicates and can be reused by
invariants and operations. The dynamic part contains the initialization (INI-
TIALISATION ) of the machine as well as operations (OPERATIONS ) over
the state (variables) of the machine. The behavior of operations is explicitly
defined in B using various constructs such as preconditions (PRE P THEN
S END), bounded choice (CHOICE S1 OR S2 ) or non-determinism (ANY v
WHERE P THEN S END). Post-conditions are expressed by substitutions
that state the new assignments of the involved variables. Output variables
may also be defined as values returned by operations.

MACHINE
name and eventually parameters

INCLUDES (optional)
imported specifications

(Static/declarative part)
SETS

declaration of abstract / enumerated sets
CONSTANTS

declaration of constants
PROPERTIES

constraints on constants
VARIABLES

declaration of variables (the machine state)
INVARIANT

declaration of invariant properties of the machine
DEFINITIONS (optional)

construction of formulas / sets using the variables of the machine
(Dynamic part)
INITIALISATION

initialization of the state of the machine (all declared variables)
OPERATIONS

definition of operations that modify the state of the machine

Figure 3: Structure of an abstract B machine

2.2.2. Tool support for B

B is supported by powerful tools like AtelierB [13], BToolkit [14] and the
more recent Bware platform [15]. These tools focus on theorem-proving but
they do not enable model-checking. ProB [16] was designed for this purpose.
It is a model checker and animator for B models. It automatically generates
counterexamples for given assertions by exhaustively exploring the model
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(using state space exploration techniques). It also simulates the execution
of operations on a given subset of the model and generates traces leading to
some desired state. An API is also provided for developers to integrate the
features of ProB in their tools.

2.3. Motivation and contribution

Component reuse helps decrease large-scale software systems time-to-
market. Handling the evolution in such component-based software prevents
architecture erosion and has long been identified and still remains an impor-
tant thus difficult task [17, 18]. To tackle this issue, this paper proposes an
approach to manage the evolution of component-based software architectures
based on the three-level Dedal architecture model.

Dedal is tailored for reuse [6, 7] and provides as an original feature its three
architecture definition levels. Indeed, specifications are the cornerstone of
the concrete component search that is performed on component repositories
to design, by reuse, the implementation of architectures. Along with Dedal
configurations and assemblies, Dedal architecture definitions keep track of all
the design decisions taken during the development process. This information
is very useful to control evolution and evaluate its impact on the intentions
of the architects. This is why Dedal is a choice Adl for architecture-based
software evolution management.

The evolution process proposed here is driven by an evolution manage-
ment model that captures changes initiated at any abstraction level, controls
their impact to preserve / restore consistency and propagates them to other
levels to maintain global coherence. This model is based on the B formal
language which provides a rich and rigorous notation to formalize the archi-
tectural concepts and express properties over them. It supports automated
analysis and model-checking thanks to the ProB tool.

In previous work [19, 20], we specified Dedal models using the B mod-
eling language and proposed an evolution management model to enable the
simulation, analysis and validation of evolution scenarios at any abstrac-
tion level using ProB. At that time, evolution was not yet automated since
models were specified and evolved manually and separately. In the remain-
der, our approach integrating both Dedal and B to automatically manage
component-based architecture evolution is presented. The automated Dedal
to B transformation as well as a problem-specific B solver built on top of the
ProB tool are the cornerstones of the contribution of this paper.
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Using our problem-specific solver enables the automatic generation of
evolution plans (sequences of change operations) to leverage the impact of a
change request in a problem-specific manner and maintain the architecture
descriptions coherent after change. The feasibility of our approach is demon-
strated by experimenting on three evolution scenarios that each addresses
change in a different abstraction level.

3. The formal evolution approach

This section presents our approach to formally handle the evolution of
multi-level component-based architecture descriptions produced during soft-
ware development. Its key idea is to use a B solver to automatically generate
evolution plans that correspond to intended changes (cf. Figure 4).

Figure 4: Evolution management approach

Given a model in an initial state, a set of state transition rules and a goal
state, a B solver finds sequences of rules that reach the goal state or proves
that the goal state cannot be reached (when it does not run out of time or
resources because of high computational complexity).
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A first requirement is thus to transform the Dedal models produced during
development into B models that can be used as an input for the solver. The
principles of this transformation are detailed in Section 3.1. Architecture
evolution operations along with validation properties must also be expressed
as a set of rules. The resulting Evolution Management Model is presented in
Section 3.2. Finally, initiated architecture changes must be described as goal
states, as explained in Section 3.3. With these inputs, a B solver can then
find an evolution plan (a sequence of rules) that achieves the intended change
(reaches the goal state) while preserving the coherence of the architecture
definition (enforcing properties), as presented in Section 3.4.

3.1. Dedal to Formal Dedal transformation

Dedal models need to be translated into B models, so that a B solver
can calculate modifications and evaluate properties on the resulting formal
architecture descriptions. Defining this transformation amounts to formalize
in B the concepts of the Dedal meta-model (cf. Figure 6). This way, any
instance of the Dedal meta-model can be transformed into an equivalent
instance of the Formal Dedal meta-model (cf. Figure 5).

Figure 5: Dedal to Formal Dedal transformation
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Figure 6: Dedal meta-model

A meta-class is usually mapped to a B variable typed by an abstract B
set while an association relation is translated into a B relation. For instance,
Figure 7 presents the formalizaton of the Component and Interface meta-
classes and their compInterfaces association.

SETS
COMPS; INTERFACES
VARIABLES
component, interface, comp interfaces
INVARIANT
component ⊆ COMPS ∧
interface ⊆ INTERFACES ∧
comp interfaces ∈ component � P1(interface)

Figure 7: Formalization of meta-classes and associations in B

11



The Component and Interface meta-classes are respectively mapped to
the component and interface variables and typed with the COMPS and IN-
TERFACES abstract sets. Their compInterfaces association holding a one-
to-many relation is translated into an injective function between the compo-
nent variable and a non-empty set of interfaces: P1(interface).

The whole Dedal meta-model formalization results in four main B ma-
chines (extracts of which are shown in Figure 8).

MACHINE Arch concepts
INCLUDES Basic concepts
SETS
ARCHS;COMPS;COMP NAMES
VARIABLES
architecture, arch components, arch connections,
component, comp name, connection,
comp interfaces client, server, . . .
INVARIANT
component ⊆ COMPS ∧
comp name ∈ component → COMP NAMES ∧
comp interfaces ∈ component � P1(interface) ∧
client ∈ component ↔ interface ∧
server ∈ component ↔ interface ∧
connection ∈ client ↔ server ∧
architecture ⊆ ARCHS ∧
arch components ∈ architecture → P(component) ∧
arch connections ∈ architecture → P(connection)

MACHINE
Arch specification
INCLUDES
Arch concepts
CONSTANTS
COMP ROLES, ARCH SPEC
PROPERTIES
COMP ROLES ⊆ COMPS ∧
ARCH SPEC ⊆ ARCHS
VARIABLES
compRole, specification, . . .

MACHINEArch configuration
USES Arch specification
SETS
COMP CLASS; CLASS NAME; ATTRIBUTES; ...
CONSTANTS
COMP TYPES
PROPERTIES
COMP TYPES ⊆ COMPS ∧
COMP TYPES = COMPS - COMP ROLES
VARIABLES
config, config components, config connections,
compType, compClass, compositeComp, class name ,
attribute, class attributes, composite uses ,
delegatedInterface , delegation , . . .
INVARIANT
compType ⊆ COMP TYPES ∧
compClass ⊆ COMP CLASS ∧
class name ∈ compClass → CLASS NAME ∧
attribute ⊆ ATTRIBUTES ∧
class attributes ∈ compClass → P(attribute) ∧
compositeComp ⊆ compClass ∧
composite uses ∈ compositeComp → config ∧
delegatedInterface ⊂ interface ∧
delegation ∈ delegatedInterface � interface ∧
. . .

MACHINE Arch assembly
USES Arch configuration
SETS
COMP INSTANCES;ASSEMBLIES;
ATTRIBUTES V ALUES
VARIABLES
compInstance, assm components, assm, current state,
attribute value, . . .
INVARIANT
compInstance ⊆ COMP INSTANCES ∧
attribute value ∈ attribute→ ATTRIBUTES V ALUES ∧
current state ∈ compInstance→ P(attribute value) ∧
assm ⊆ ASSEMBLIES ∧
assm components ∈ assm→ P1(compInstance)
. . .

Figure 8: Overview of the Dedal formal meta-model

A generic Arch concepts machine helps define the three specific Arch specification,
Arch configuration and Arch assembly machines that each correspond to one
of the three architecture description levels of Dedal. Arch concepts covers
the generic concepts of a software architecture (corresponding to the ab-
stract Component, Connection, and ArchitectureDescription meta-classes).
It includes an inner Basic concepts machine that contains definitions for the
finer-grained architectural elements like Interface, InterfaceType, Signature
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or Parameter meta-classes.
These generic definitions are reused in the three specific machines. For

instance, in the Arch specification machine, component roles are defined as a
subset of components: COMP ROLES ⊆ COMPS ∧ compRole ⊆ COMP ROLES.

This corresponds to the inheritance relation between the Component and
CompRole meta-classes. Consequently, all relations defined for the compo-
nent set (such as comp interfaces) also stand for the compRole set.

The abstract B machines define a formal meta-model that can be instan-
tiated (concrete values are given to their variables) in order to generate a
Formal Dedal model. The latter is then used as an input for the B solver.

3.2. The evolution management model

The evolution management model is composed of generic evolution rules
that are used by the solver to find evolution plans satisfying given evolution
goals. It consists in a B machine that defines the rules and properties that
respectively enable the simulation and validation of architecture evolution at
the three abstraction levels (cf. Figure 9).

MACHINE
EvolutionManager
INCLUDES
Arch specification, Arch configuration, Arch assembly
SETS
/*Enumerated set to indicate the level of change*/

CHANGE LEVEL = {eLevel, specLevel, configLevel, asmLevel}
VARIABLES
/*Variable to control the level of change*/
changeLevel, . . .
DEFINITIONS
/*Consistency and coherence properties*/
. . .
global consistency == spec consistency ∧ config consistency ∧ assm consistency
global coherence == specConfigCoherence ∧ configAssmCoherence
/*GOAL is the predicate given to the solver to find an evolution plan satisfying it*/
GOAL == global consistency ∧ global coherence ∧ . . .
INITIALISATION
/*Initialization is used to set the initial level of change and
the initiated change*/
. . .
OPERATIONS
/*Initialization operations*/
. . .
/*Evolution rules(control the architecture manipulation operations) */
. . .
END

Figure 9: The EvolutionManager machine
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Its main elements are detailed in the following subsections.

3.2.1. Evolution rules

Evolution rules are operations that control the access and the impact
of architecture manipulation operations in order to manage evolution and
generate consistent evolution plans (cf. Figure 10). Each evolution rule
embeds a corresponding architecture manipulation operation that handles
the actual modification of the model, not taking into account the context of
the current evolution plan.

output ← evolutionRuleName(targetArchitecture, artifacts) =
PRE

initialization = true ∧
changeLevel = currentChangeLevel ∧
artifacts /∈ addedArtifacts ∪ deletedArtifacts ∧
manipulationOperationPrecondition

THEN
/* execute manipulationOperationName(targetArchitecture, artifacts),
update the sets of added artifacts and deleted artifacts,
set the value of output parameters */

END

Figure 10: Schema of an evolution rule

The evolution rule preconditions act as a primary filter for model ma-
nipulation operations. Initialization preconditions check that all the model
initialization operations have completed before starting calculating evolu-
tion plans. Initialization includes calculating and checking relations between
architecture elements, such as compatibility and substitution between com-
ponents and interfaces. Change level preconditions restrict access to the op-
erations related to the current level of change (evolution is managed on one
level at a time). History preconditions prevent operations that may generate
cycles and then decrease the efficiency of the solver. For instance, deleting
and adding the same artifact several times is unnecessary during an evolu-
tion process. Similarly, removing an added artifact results in a null operation
that may be avoided. History consists of two sets: one for added artifacts
and the other for deleted ones. Evolution rules also inform the solver about
the artifacts that have to be manipulated after the last executed change op-
eration. This information is used as a heuristic to increase the efficiency of
the solver. Heuristics are further discussed in Section 4.1.2.

Figure 11 gives the definition of the evolution rule that controls the role
addition operation. This rule is enabled when evolution is handled at the
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specification level, after initialization, provided that the role has not yet
been added or previously removed. If so, the precondition of the role addi-
tion operation is checked and, when it is verified, the operation is executed.
Finally, the set of added component roles (addedRoles) is updated and the
output is set to the added component role (newRole).

output ← mng addRole(spec, newRole) =
PRE
/*Initialization precondition*/

initialisation = TRUE ∧
/*Change level precondition*/

changeLevel = specLevel ∧
/*Precondition to avoid cycles (inverse operation)*/

newRole 6∈ (deletedRoles ∪ addedRoles) ∧
/*Precondition of the role addition operation*/

roleAdditionPrecondition
THEN
/*Access to role addition operation*/

addRole(spec, newRole) ||
addedRoles := addedRoles ∪ {newRole} ||
outpout := newRole

END;

Figure 11: The component role addition evolution rule

3.2.2. Model manipulation operations

A model manipulation operation is an operation that changes a target
software architecture by the deletion, addition or substitution of one of its
elements (components and connections). They are composed of three parts:

• the operation signature that defines the operation name and its argu-
ments,

• preconditions that are related to the architectural model (e.g. a pre-
condition that checks if substitutability between two component classes
holds),

• actions (called substitutions in B) that update a set of variables re-
lated to the architectural model (e.g. the set of components of the
architecture).
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Architecture specification evolution. Evolving an architecture specification is
usually a response to a new software requirement. For instance, the archi-
tect may need to add new functionalities to the system and hence add some
new roles to the specification. Moreover, a specification may also be modified
during the change propagation process to preserve coherence and keep an up-
to-date specification description of the system that may be implemented in
several ways. The proposed manipulation operations related to the specifica-
tion level are the addition, deletion and substitution of a component role and
the addition and deletion of connections. Figure 12 presents the definition
of the role addition operation as an example of an architecture specification
manipulation operation. Its precondition first checks that arguments are
soundly typed and then that the chosen role does not already belong to the
architecture specification and will not name clash. Its actions update the
set of component roles of the architecture specification, along with the sets
of connected provided and required interfaces (respectively spec components,
spec servers and spec clients). Indeed, as only effectively used elements are
defined at specification level, every interface must be connected.

addRole(spec, newRole) =
PRE
spec ∈ arch spec ∧ newRole ∈ compRole ∧ newRole 6∈ spec components(spec) ∧
/* spec does not contain a role with the same name*/
∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec)
⇒ comp name(cr) 6= comp name(newRole))
THEN

spec servers(spec) := spec servers(spec) ∪ servers(newRole) ||
spec clients(spec) := spec clients(spec) ∪ clients(newRole) ||
spec components(spec) := spec components(spec) ∪ {newRole}

END;

Figure 12: The component role addition manipulation operation

Architecture configuration evolution. Change can be initiated at the configu-
ration level, for example when new versions of software component classes are
released or when component classes are not available anymore. Otherwise,
an implementation may also be impacted by change propagation either from
the specification level, in response to new requirements, or from the assembly
level, in response to a dynamic change of the system. Indeed, a configuration
may be instantiated several times and deployed in multiple contexts. Figu-
re 13 presents the component class substitution operation as an example of
an architecture configuration manipulation operation.
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replaceClass(config, oldClass, newClass) =
PRE

oldClass ∈ compClass ∧ newClass ∈ compClass ∧ config ∈ configuration ∧
oldClass ∈ config components(config) ∧
/* The old component class can be substituted for the new one

(verified by the component substitution rule)*/
newClass 6∈ config components(config) ∧ (oldClass, newClass) ∈ class substitution

THEN
config components(config) := (config components(config) - {oldClass}) ∪ {newClass}

END

Figure 13: The component class substitution manipulation operation

Besides checking the type of the arguments, its precondition verifies that
the new component class does not already belong to the configuration and
can be a substitute for the old component class (using the relations calcu-
lated during initialization). When the precondition is verified, the set of
component classes composing the configuration is updated. As compared to
the role addition operation presented in previous section, there is no need to
update the sets of client and server interfaces (connected required and pro-
vided interfaces) here, as substitution must preserve the connections of the
replaced component class (see § 3.2.3 for deeper insight about substitution
rules).

Architecture assembly evolution. Since the architecture assembly represents
the software at runtime, managing the assembly level relates to dynamic
evolution issues. Indeed, some software systems have to be self-adaptive to
keep providing their functions despite environmental changes (e.g. lack of
resources, failures, user requests). Dealing with unanticipated changes is one
of the most important issues in software evolution. This issue is handled by
the evolution manager which monitors the execution state of the software
through its corresponding formal model. It then triggers the assembly evolu-
tion rules to restore consistency and coherence when needed. The assembly
manipulation operations include component instance addition, component
instance removal, component instance substitution and component instance
connection / disconnection. Figure 14 gives the definition of the component
instance addition as an example of an assembly manipulation operation. Af-
ter checking the types of the arguments, the precondition verifies that the
instance corresponds to the chosen component class, that it does not already
belong to the assembly and that another instance of the class can be added
in the assembly. It also verifies that the chosen initial state is valid.
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deployInstance(asm, inst, class, state) =
PRE

asm ∈ assembly ∧ class ∈ compClass ∧
/* The instance is a valid instantiation of the chosen component class*/

inst ∈ compInstance ∧ class = comp instantiates(inst) ∧ inst 6∈ assm components(asm) ∧
/* The state given to the instance is a valid value assignment of its attributes

of the instantiated component class*/
state ∈ P (attribute value) ∧ card(state) = card(class attributes(class)) ∧

/* The maximum number of allowed instances of the given component class
is not already reached*/

nb instances(class) < max instances(class)
THEN

/*initial and current state initialization*/
initial state(inst) := state ||
current state(inst) := state ||

/*updating the number of instances and the assembly architecture*/
nb instances(class) := nb instances(class) + 1 ||
assm components(asm) := assm components(asm) ∪ {inst} ||
assm clients(asm) := assm clients(asm) ∪ clients(inst)

END;

Figure 14: The component instance deployment manipulation operation

When executed, the operation adds the instance in the assembly, updates
the count of instances of the component class and updates the set of client
interfaces. The set of server interfaces will be updated later, as client inter-
faces are automatically connected by the evolution manager to maintain the
consistency of the assembly (see § 3.2.3).

Manipulation operations constitute the dynamic aspect of the architec-
tural formal models. They enable to change the state of a model which
must therefore be validated thanks to consistency and coherence properties
exposed in the following sections.

3.2.3. Consistency properties

Consistency properties maintain the correctness of each architecture de-
scription level during the evolution process. Taylor et al. [21] define consis-
tency as an internal property intended to ensure that different elements of an
architecture model do not contradict one another. They point out five kinds
of inconsistencies that may occur in architecture models: name, interface,
behavior, interaction and refinement. Our consistency properties deal with
the following inconsistencies:

• Name consistency ensures that each component holds a unique name
to avoid conflicts when selecting components.
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• Interface consistency ensures that all architecture connections are cor-
rect (i.e. a required interface is always connected to a compatible
provided interface).

• Interaction consistency ensures that the architecture realizes its func-
tional objectives (components are able to soundly cooperate through
their connected interfaces). In our approach, this property is imple-
mented as a verification that each required interface is connected to a
compatible provided one. Moreover, in architecture specifications, all
server interfaces must also be connected (no unused feature is described
at this level). Besides, every architecture definition must be composed
of a connected graph, so that no part of the architecture is isolated.

Behavior consistency is out of the scope of the work presented in this
paper which only considers static type definitions, for now. Refinement con-
sistency is handled separately by our coherence properties (cf. Section 3.2.4).

As an example, the formalization of our interface consistency property is
presented in Figure 15.

∀ (cl, se).(cl ∈ client ∧ se ∈ server ⇒
((cl, se) ∈ connection ⇒
∃ (C1 , C2 , int1 , int2 ).(C1 ∈ component ∧ C2 ∈ component ∧ C1 6= C2 ∧
int1 ∈ interface ∧ int2 ∈ interface ∧ cl = (C1 , int1) ∧ se = (C2 , int2) ∧
(int1 , int2) ∈ int compatible)))

Figure 15: Interface consistency property

This property states that a required (client) interface is properly con-
nected to a provided (server) interface when these two interfaces belong to
different components and have compatible types.

Consistency properties are based on commonly adopted syntactic typing
rules that state compatibility and substitution between finer grained entities
such as components and interfaces. These rules transpose the well studied
typing principles used in the object-oriented paradigm to the component-
oriented paradigm. As usual, the main principle is that a component that
belongs to a subtype can substitute for a component that belongs to a su-
pertype (i.e. be connected at the same place in the same architecture).
This entails that a component subtype must define a set of interfaces that
can replace all the interfaces defined in its supertype (identical interfaces
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or interfaces belonging to subtypes). Moreover, a component subtype can-
not define extra required interfaces, as they correspond to extra connection
requirements that break the substitution guarantee with the supertype. Con-
versely, extra provided interfaces can be defined in a subtype as they do not
imply mandatory extra connections.

Comparing component types thus amounts to comparing interface types.
Interface type hierarchies are built with respect to the same substitution prin-
ciple: an interface subtype must define a set of operations that can replace
those of its supertypes. Usual specialization rules are applied to provided
interface types, that are comparable to object types. A provided interface
subtype must define at least the same operations as its supertypes or special-
ized operations that can replace them. Classically, an operation specializes
another one when it has the same name, a contravariant set of input parame-
ters (at most as many parameters, with identical or more generic data types)
and a covariant set of output parameters (at least as many parameters, with
identical or more specific data types). With these rules, it is always possible
to call a more specialized operation with the input values of a more generic
one and then to use the output values of the more specialized operation in
place of the output value of the more generic one.

Regarding required interfaces, opposite specialization rules are used. In-
deed, a required interface corresponds to dependencies. Thus, a required
interface subtype cannot define more operations than its supertypes, in or-
der not to add extra dependencies. It cannot define less operations either,
as this can impair interactions with other components. A required interface
subtype must then implement the same operations as its supertypes, or more
generic operations (i.e. operations with the same name, at least as many in-
put parameters of identical or more specific data types and at most as many
output parameters with identical or more generic data types). Requiring
more generic operations than its supertypes, a more specialized required in-
terface can replace a more generic required interface. Dedal typing rules are
discussed and detailed in previous work [22].

Compatibility is calculated thanks to the aforementioned typing rules.
Basically, a required interface is compatible with a provided interface when
they have the same type (i.e. are defined by the same set of operations). The
required interface is also compatible with a provided interface that belongs to
a subtype of its type (because of the substitution principle). Compatibility
rules are also detailed in [22].
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3.2.4. Coherence properties

Coherence properties prevent architecture erosion (mismatches between
the different description levels) so as to maintain the global correctness of
architecture definitions. Coherence properties maintain the relations that
must exist between the specification, configuration and assembly defining
an architecture (cf. Figure 16-b): its configuration must be a valid imple-
mentation of its specification; its assembly must be a valid instance of its
configuration.These relations between description levels rely on typing rela-
tions between their composing elements. The component classes composing
the configuration of an architecture must implement the component roles of
its specification. In the same way, the component instances composing its
assembly must be valid instances of the component classes of its configura-
tion. This relates to a generic principle (cf. Figure 16-a) that a relation
between two kinds of models implies a relation between their composing ele-
ments (and possibly reciprocally under restrictive conditions). For instance,
a model can be considered as a specialization of another model only when
its composing elements specialize the elements of the other model.

(a) inter-model coherence relation
generic principle

(b) coherence relations between the
Dedal architecture levels

Figure 16: Coherence relations between architecture levels

The generic principle can be formalized by the generic coherence rule
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depicted in Figure 17.

coherence(modelA, elemA,modelB , elemB , rela, relb, R,Q) ==
∀(Ma,Mb).(Ma ∈ modelA ∧Mb ∈ modelB ⇒ ((Ma,Mb) ∈ R

⇔
(∀ eb.(eb ∈ elemB ∧ (Mb, eb) ∈ relb ⇒
∃ ea.(ea ∈ elemA ∧ (Ma, ea) ∈ rela ∧ (ea, eb) ∈ Q)))))

Figure 17: Generic coherence rule

In our work, two properties are defined in the Evolution Management
Machine to assert the coherence of an architecture definition : coherence
between configuration and specification and coherence between assembly and
configuration.

Coherence between configuration and specification. A specification is a formal
description of software requirements that is used to guide the search for suit-
able concrete component classes to implement the software. An architecture
configuration is coherent with a specification when two properties hold:

• all component roles from the specification are realized by component
classes in the configuration. This results in a many-to-many relation
as several component roles may be realized by a single component class
while, conversely, several component classes may be needed to realize a
single role. Using the generic coherence rule (cf. Figure 17), this first
property can be expressed as shown in Figure 18.

implements ∈ configuration↔ specification ∧
coherence(configuration, compClass, specification, compRole,

config components, spec components, implements, realizes)

Figure 18: Implementation coherence property using the generic rule

To illustrate the instantiation of the generic coherence rule, we give the
expansion of the implementation coherence property in Figure 19. In
the remainder (Figure 20 and Figure 21), only the generic coherence
rule is used.

• each connected provided (server) interface in the configuration is de-
fined in the specification. This prevents having a configuration that
implements extra functions not specified at the higher level which leads
to architectural drift or erosion (cf. Figure 20).
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implements ∈ configuration↔ specification ∧
∀ (Conf, Spec).(Conf ∈ configuration ∧ Spec ∈ specification ⇒
(Conf, Spec) ∈ implements
⇔
∀ CR.(CR ∈ compRole ∧ CR ∈ spec components(Spec) ⇒
∃ CL.(CL ∈ compClass ∧ CL ∈ config components(Conf) ∧
(CL,CR) ∈ realizes)))

Figure 19: Implementation coherence property (expanded)

conform ∈ specification↔ configuration ∧
coherence(configuration, server, specification, server,

config servers, spec servers, conform, int substituion′)
where :
(s, s′) ∈ int substitution′ ⇔ (serverInterfaceElem(s), serverInterfaceElem(s′)) ∈ int substitution

Figure 20: Provided interface connection coherence property

Coherence between assembly and configuration. As the definition of an as-
sembly is not obtained from a configuration by an instantiation process (as-
semblies are defined at design-time), coherence between assembly and con-
figuration descriptions must be checked a posteriori explicitly. An assembly
is coherent with a configuration when every class of the configuration is in-
stantiated at least once in the assembly and, conversely, every component
instance in the assembly is a valid instance of a component class of the con-
figuration (cf. Figure 21).

instantiates ∈ assembly → configuration ∧
coherence(assembly, compInstance, configuration, compClass,

assm components, config components, instantiates, comp instantiates)
∧
coherence(configuration, compClass, assembly, compInstance,

config components, assm components, instantiates−1, comp instantiates−1)
where:
instantiates−1 and comp instantiates−1 are the respective reverse relations of instantiates and comp instantiates

Figure 21: Configuration instantiation coherence property

3.3. Evolution goal

The evolution goal (GOAL) consists in a predicate definition that the
solver will attempt to satisfy by searching for a valid sequence of evolution
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rules (evolution plan) to execute on the architecture. The evolution goal con-
sists of a static and a variable part. The static part contains all the consis-
tency (global consistency) and coherence (global coherence) properties: the
calculated evolution plan must maintain the validity of the architecture. The
variable part contains the arguments of the initiated change: the evolution
plan must achieve the intended change. For example, if the initiated change
consists in the addition of a component role cr in a specification spec, the
evolution goal would be the following:

GOAL == global consistency ∧ global coherence ∧ cr ∈ spec components(spec)

3.4. Evolution plan generation

Our evolution process distinguishes two kinds of change: initiated change
and triggered change. Initiated changes have an external source: they origi-
nate from a user action or from the execution environment. Triggered changes
are induced by the evolution manager to restore architecture consistency at
each level (they are called local changes) and / or global architecture coher-
ence (they are called propagated changes), after they have been impacted by
an initiated change.

Evolution is handled as a three step process (cf. Figure 22).

Figure 22: Evolution plan generation process

First, the initiated changes that compose a change request are all pro-
cessed. These changes all affect a given level of architecture description
(called the changed architecture level). In a second step, the impact of these
initiated changes are calculated at the changed architecture definition level,
thanks to the consistency properties. Maintaining consistency may imply
additional (triggered) changes. Finally, the impact of these changes on the
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other architecture definition levels are calculated thanks to the coherence
properties. Maintaining coherence may also imply additional (propagated)
changes on the other architecture definition levels.

4. Implementation and experimentation

To support our approach, we have implemented DedalStudio, a CASE
tool which provides a Dedal modeler, a Formal Dedal generator and an evo-
lution manager based on a solver. Three experiments are then presented in
this section to assert the feasibility of our formal evolution approach. Each
evolution scenario illustrates a change propagation issue that starts at a dif-
ferent abstraction level, in order to cover the three kinds of multi-level evolu-
tion: top-down, bottom-up and mixed. Finally, we evaluate the performance
of our solver on the basis of the three experiments.

4.1. DedalStudio
4.1.1. Architecture of the tool suite

To validate our approach, we have implemented DedalStudio, an Eclipse-
based modeling and evolution management environment for Dedal. The tool
architecture is shown in Figure 23.

Figure 23: Architecture of the Dedal modeling and evolution management environment

DedalStudio enables the creation of architecture definitions, using a graph-
ical concrete syntax designed for the Dedal meta-model, composed of Spec-
ification Diagrams (SD), Configuration Diagrams (CD) and Assembly Di-
agrams (AD). The diagram editor (DedalModeler), shown in Figure 24 is
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based on SIRIUS 1, a generic platform that enables the creation of graph-
ical modeling tools on top of EMF (Eclipse Modeling Framework) 2. The
FormalDedalGenerator creates Formal Dedal models corresponding to Dedal
diagrams. The DedalManager handles the evolution process and the gener-
ation of evolution plans. It implements a customized solver built upon the
ProB API 3 that enables the animation and model-checking of B models. Fi-
nally, the DedalChangeParser parses the generated evolution plans and apply
the manipulation operations on the Dedal models. All theses tools, except
for DedalModeler which is targeted to the architect, are fully automatic.

Figure 24: The DedalModeler tool

4.1.2. The DedalManager solver

Evolution management starts when a change to the architecture model is
requested (for instance, a component class addition is requested in the config-
uration). The DedalManager receives the request, identifies the change level
and deduces the evolution goal. It then invokes its solver, that conforms to
the design principles presented in Section 3. The resolution algorithm imple-
mented in the solver explores the search space to find a sequence of evolution

1https://eclipse.org/sirius/
2https://eclipse.org/modeling/emf/
3http://stups.hhu.de/ProB/w/ProB Java API
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rules leading to the chosen goal. If a solution is found, the DedalManager
generates an evolution plan that can then be committed by user. Otherwise
(i.e. in case of failure), the DedalManager rejects the change request.

In previous work [20], we have made an evaluation of the performances
of the ProB solver to generate evolution plans by state space exploration.
The tested strategies were Depth-First (DF), Breadth-First (BF) and mixed
(DF/BF) [23]. In most cases DF performed best, better than DF/BF and
BF. The ProB solver, however, is general-purpose and increasing resolution
time (over 3 minutes) is necessary when models become complex. To try and
overcome this problem, this paper proposes an alternative: the implementa-
tion of a customized solver, using the API provided with ProB. It also consists
in a depth-first search algorithm but enhanced with two specific heuristics:
the artifact-oriented heuristic and the operation-oriented heuristic.

The artifact-oriented heuristic. The idea of artifact-oriented heuristic is to
prioritize the operations manipulating the artifacts that are more likely to
satisfy the evolution goal (thereafter called the main artifacts). For instance,
adding a new component usually entails several connection operations on that
component to restore architecture consistency. Main artifacts are determined
at each iteration of the search process by the output of last executed evolution
rule.

The operation-oriented heuristic. The operation-oriented heuristic adopts an
opposite point of view. It delays the use of operations that engender unsat-
isfied dependencies between the components of the architecture and hence
more evolution operations to be found in order to reestablish architecture
consistency. Addition operations are the most concerned ones. They are
therefore ordered as the least priority operations while performing the search
process.

The search algorithm. Listing 1 describes the search algorithm of our cus-
tomized solver. Lines 1–14 define and initialize the main variables of the
algorithm. Transitions refers to the set of all the evolution rules instances
in the current state of the architecture model. The set of already explored
transitions is stored in visited, in order to avoid cycles in the search pro-
cess. The current sequence of executed transitions is stored in pl, to collect
the candidate evolution plan. The traversal of the search graph is handled
by stack. At each step of the search process, the set of all the enabled tran-
sitions (i.e. the evolution rule instances whose preconditions are verified) is
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pushed on the stack in order to explore them in the next steps. Transitions
are pushed on the stack along with the current state of the architecture model
and the current evolution plan. This enables to backtrack to previous nodes
in the search graph and explore other paths when dead ends are reached. The
main artifact a is used in the evaluation of the artifact-oriented heuristics.
The initialMainArtifact references the artifact modified by the initiated
change. It is calculated from the post-conditions of the corresponding oper-
ations.

1 // initialisation step

2 s = initialState;

3 a = initialMainArtifact;

4 pl = null;

5 stack = null;

6 visited = ∅;

7 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
8 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
9 lowpriorTransitions = ∅;

10 enabledTransitions = enabledTransitions - priorTransitions;

11
12 // organizing stack

13 stack.push(s, pl, enabledTransitions);

14 stack.push(s, pl, priorTransitions);

15
16 // starting forward , DF search

17 while (stack 6= ∅)

18 {

19 (s, pl , ei) = stack.pop();

20 if ((s, ei) /∈ visited)

21 {

22 visited = visited ∪ {(s, ei)};
23 s = execute(ei);
24 pl = pl+ei;
25 if (goal == true) return pl;

26 a = output(ei);
27 enabledTransitions = {ei ∈ Transitions where pre(ei) == true};
28 priorTransitions = {ei ∈ enabledTransitions where h1(ei) == true};
29 lowpriorTransitions = {ei ∈ enabledTransitions where h2(ei) == true};
30 enabledTransitions = enabledTransitions - (priorTransitions ∪

lowpriorTransitions);

31 stack.push(s, pl, lowpriorTransitions);

32 stack.push(s, pl, enabledTransitions);

33 stack.push(s, pl, priorTransitions);

34 }

35 }

36 return null; // no solution for this change request

Listing 1: Search algorithm of our specific solver

At each iteration of the search process (lines 17–33), the top of the stack

is popped (line 19), setting a context consisting of an architecture model state
(s), an evolution plan (pl) and an enabled transition (ei). If the transition
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has already been visited from this state (line 20), another context is popped
from the stack (this happens when a state can be reached by several paths of
the search tree). If the transition has not been explored, it is listed as visited
(line 22) and executed (line 23), updating the state of the architecture model.
The last executed transition is appended to the evolution plan (line 24). If
the goal is satisfied, an evolution plan has been found and it is returned
(line 25). Otherwise, the set of the enabled transitions in the current state
is calculated (line 27) as is the set of higher priority enabled transitions (line
28) based on the artifact-oriented heuristic (h1). This uses the main artifact
defined as the output of the last executed transition (line 26). The set of
lower priority enabled transitions is also calculated (line 29), based on the
operation-oriented heuristic (h2). This enables to push on the stack the
enabled transitions to be explored depending on the priority determined by
our heuristics (lines 31–33). The use of a stack enables a DF traversal of the
graph: the next iteration of the search process will pop one of the currently
enabled transitions, from the current architecture state, trying to extend the
search path down to the goal. When a dead end is reached (no transitions
are enabled in the current state), the search process implicitly backtracks to
a previous graph node by popping from the top of the stack a previously
pushed context. This enables the complete traversal of the search graph
(breadth search). The search process is iterated until the goal is reached
or there is no more transition to explore (line 17). In this latter case, the
requested change is rejected (line 36).

Three examples of evolution plans calculated by our solver are presented
in the next sections.

4.2. First experiment: requirement change

The first scenario addresses a requirement change. The initial Has archi-
tecture enables to switch on / off the lights at specific hours (cf. Figure 25).
However, it does not enable any control on light intensity. To add this
new functionality, an architect should modify the Has specification. This
corresponds to a top-down evolution since the change starts at the highest
abstraction level. A solution is to replace the Light component role by a
new one (Luminosity) that enables intensity control. Figure 26 presents the
initial architecture specification and the evolved one.

An extract of the instantiation of the Arch specification machine corre-
sponding to the Has is presented in Figure 27.
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Figure 25: Architecture definitions of the HAS

Figure 26: Evolving the HAS specification by role replacement

4.2.1. Evolution goal and initiated change

The initiated change consists in replacing the Light component role (cr1 )
by the Luminosity component role (cr1a). This corresponds to the execution
of the role substitution operation on the Has specification:

spec replaceRole(HAS spec, cr1, cr1a)

The following goal is thus given to the solver, based on the post-conditions
of the substitution operation, defining the change that must be achieved by
the evolution process:
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GOAL == global consistency ∧ global coherence ∧ cr1a ∈ spec components(HAS spec) ∧
cr1 6∈ spec components(HAS spec)

The solver then calculates an evolution plan that can restore the consis-
tency and coherence of the architecture that may have been altered by the
initial change.

compRole := {cr1, cr1a, cr2, cr3, cr3a}||
comp name := {cr1 7→ Light, cr1a 7→ Luminosity, cr2 7→ T ime,

cr3 7→ HomeOrchestrator,
cr3a 7→ HomeOrchestrator2}||

arch spec := {HAS spec}||
spec components := {HAS spec 7→ {cr1, cr2, cr3}}||
spec connections := {HAS spec 7→ {

((cr3, rintILight) 7→ (cr1, pintILight)),
((cr3, rintIT ime) 7→ (cr2, pintIT ime)), }}||

spec clients := {(HAS spec 7→ {(cr3, rintILight), (cr3, rintIT ime)}}||
spec servers := {(HAS spec 7→ {(cr1, pintILight), (cr2, pintIT ime)}

Figure 27: Instantiation of the Arch specification machine for the Has

4.2.2. Triggered change

The intended role substitution entails the addition of a new server inter-
face (the IIntensity provided interface) which must be connected to restore
the consistency of the Has specification (all interfaces must be connected at
specification level). The solver generates the plan presented in Figure 28 to
restore the consistency of the Has specification.

spec disconnect(HAS spec, (cr3, rintILight), (cr1a, pintILight))
spec disconnect(HAS spec, (cr3, rintIT ime), (cr2, pintIT ime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1a, pintILight2))
spec connect(HAS spec, (cr3a, rintIT ime2), (cr2, pintIT ime))
spec connect(HAS spec, (cr3a, rintIIntensity), (cr1a, pintIIntensity))

Figure 28: Has specification consistency restoration plan

Change entails the disconnection of all the required interfaces, the deletion
of the initial orchestrator (cr3 ), the addition of a new orchestrator (cr3a)
and finally the connection of all the required interfaces (this is enough to get
all the interfaces connected and satisfy the interaction consistency property
at specification level).

After consistency is verified for specification, change is propagated to the
configuration in order to restore the coherence of the architecture definition.
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4.2.3. Change propagation to the configuration

Coherence is altered due to the new requirement defined by the specifica-
tion. Indeed, the initial Has configuration (cf. Figure 25) does not correctly
implement all the roles of the evolved Has specification. Figure 29 details the
instantiation of the Arch configuration machine corresponding to the initial
Has configuration.

compClass := {cl1, cl1a, cl2, cl3, cl3a, cl2a}||
comp name := {cl1 7→ Lamp, cl1a 7→ AdjustableLamp, cl2 7→ Clock,

cl3 7→ Orchestrator, cl3a 7→ AndroidOrchestrator,
cl2a 7→ AndroidClock}||

configuration := {HAS config}||
config components := {HAS config 7→ {cl1, cl2, cl3}}
config connections := {HAS config 7→ {

((cl3, rintIPower) 7→ (cl1, pintIPower)),
((cl3, rintIClock) 7→ (cl2, pintIClock))}

Figure 29: Initial Has configuration in Formal Dedal

Change propagation is therefore needed to restore coherence. The restora-
tion plan found by the solver is presented in Figure 30.

config replaceClass(HAS config, cl1, cl1a)
config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config addClass(HAS config, cl3a)
config connect(HAS config, (cl3a, rintILamp2), (cl1a, pintILamp2))
config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config connect(HAS config, (cl3a, rintIIntensity), (cl1a, pintIIntensity))

Figure 30: Coherence restoration plan for the Has configuration

It first consists in replacing the Lamp component class by the Adjustable-
Lamp component class. This operation does not require any modification
of the connections, as it is based on the substitution principle between the
two component classes (the AdjustableLamp class is a specialization of the
Lamp class). The situation is different regarding the Orchestrator compo-
nent class. It cannot be simply replaced by the existing AndroidOrchestrator
component class, which is a valid implementation of the HomeOrchestrator2
role. Indeed, as it holds an extra required interface, the AndroidOrchestrator
component class is not a specialization of the Orchestrator component class.
Nonetheless, the solver is able to find a suitable plan to restore consistency
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in this more difficult situation. The Orchestrator component class is dis-
connected and removed. The AndroidOrchestrator component class is then
added and connected. This way, the configuration is consistent (all required
interfaces are connected and the configuration is composed of a unique con-
nected graph of components) and coherent with the specification (every role
is implemented in the configuration).

4.2.4. Change propagation to the assembly

After coherence is reached in the configuration, change is propagated
to the architecture assembly. Here again, coherence is altered because the
current Has assembly is not a valid instantiation of the evolved Has configu-
ration. Figure 31 details the initial state of the corresponding Arch assembly
machine.

compInstance := {ci11, ci12, ci1a1, ci1a2, ci2, ci2a, ci3, ci3a}||
comp instantiates := {ci11 7→ cl1, ci12 7→ cl1, ci1a1 7→ cl1a

ci1a2 7→ cl1a, ci2 7→ cl2, ci2a 7→ cl2
ci3 7→ cl3, ci3a 7→ cl3}||

compInstance name := {ci11 7→ lamp1, ci12 7→ lamp2, ci1a1 7→ adjustableLamp1,
ci1a2 7→ adjustableLamp2, ci2 7→ clock1
ci3 7→ orchestrator1, ci3a 7→ androidOrchestrator1,
ci2a 7→ androidClock1}||

assembly := {HAS assembly}||
assm components := {HAS assembly 7→ {ci11, ci12, ci2, ci3}}
assm connections := {HAS assembly 7→ {

((ci3, rintIPowerInst) 7→ (ci11, pintIPowerInst)),
((ci3, rintIClock) 7→ (ci2, pintIClockInst)), . . . }

Figure 31: Initial Has architecture assembly

The coherence restoration plan presented in Figure 32 is generated by the
solver to propagate changes. First, the client interfaces of the Orchestrator
component instance are disconnected. Then, the two Light component in-
stances are replaced by AdjustableLight component instances (as allowed by
the substitution principle). The Orchestrator component instance is removed
and an AndroidOrchestrator component instance is added. As explained for
the configuration coherence restoration, substitution is not possible because
of the extra required interfaces of the AndroidOrchestrator component. For-
tunately, an evolution plan can still be found so that every component class
in the configuration is instantiated at least once in the assembly. Finally,
all the required interfaces are connected to compatible provided interfaces,
maintaining a consistent assembly.
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assm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
assm unbind(HAS assembly, (ci3, rintILampInst), (ci2, pintILampInst2))
assm unbind(HAS assembly, (ci3, rintIClockInst), (ci12, pintIClockInst))
assm replaceInstance(HAS assembly, ci1, ci1a1)
assm replaceInstance(HAS assembly, ci12, ci1a2)
assm removeInstance(HAS assembly, ci3)
assm deployInstance(HAS assembly, ci3a)
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a1, pintILampInst1))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a1, pintIIntensityInst1))
assm bind(HAS assembly, (ci3a, rintIClockInst), (ci2, pintIClockInst))
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a2, pintILampInst2))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a2, pintIItensityInst2))

Figure 32: Coherence restoration plan for the Has architecture assembly

4.3. Second experiment: implementation change

The second scenario addresses an implementation change. The objective
is to enable the control of the building through a mobile device (running
Android OS for example). To adapt the current implementation to Android,
the Orchestrator component class (cl3 ) should be removed and replaced with
an Android compatible one (cl3a). Change is initiated at the configuration
level, which entails a mixed evolution: bottom-up because the change has
to be propagated to the higher level specification and top-down because it
has to be propagated also to the lower assembly level. Figure 33-a shows the
initial implementation of the Has while Figure 33-b shows the evolved one.

Figure 33: Evolving the HAS configuration by component substitution

4.3.1. Initiated change

Change is initiated by deleting the initial orchestrator (cl3 ) and adding
the Android compatible one (cl3a). This is processed by the following se-
quence of operations:
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config disconnect(HAS config, (cl3, rintILamp), (cl1, pintILamp))
config disconnect(HAS config, (cl3, rintIClock), (cl2, pintIClock))
config deleteClass(HAS config, cl3)
config addClass(HAS config, cl3a)

To start the evolution process, the following goal is given to the solver:

GOAL == global consistency ∧ global coherence ∧ cl3a ∈ config components(HAS config) ∧
cl3 6∈ config components(HAS config)

4.3.2. Triggered change

The generated triggered change is listed in Figure 34. To restore consis-
tency, all component classes must be correctly connected. The AndroidOrches-
trator component class requires an additional server interface to control the
intensity of light. The Lamp component class (cl1 ) is suitably replaced with
AdjustableLamp (cl1a) that provides the IIntensity server interface. This is
another illustration of the solving capabilities of our approach.

config connect(HAS config, (cl3a, rintIClock2), (cl2, pintIClock))
config replaceClass(HAS config, cl1, cl1a)
config connect(HAS config, (cl3a, rintIPower2), (cl1a, pintIPower2))
config connect(HAS config, (cl3a, rintIIntensity), (cl1a, pintIIntensity))

Figure 34: Has configuration consistency restoration plan

After configuration consistency is verified, change is propagated to the
architecture specification.

4.3.3. Change propagation to the specification

The current Has specification is not any more a good design model of
the new version of the Has configuration. This corresponds to an erosion
problem as light intensity control is not included in the current specification.
Hence, a new specification version is required to keep architecture descrip-
tions coherent.

Change is propagated to the Has specification (cf. Figure 35) by replac-
ing the HomeOrchestrator role (cr3 ) with the HomeOrchestrator2 (cr3a).
To do so, the HomeOrchestrator role is disconnected and deleted. Then the
HomeOrchestrator2 role is added. On the other way, the Luminosity role
(cr1a) can be directly substituted for the Light role (cr1 ). This enforces
coherence between the specification and the configuration. Finally, the con-
nection of all client interfaces is sufficient to restore the consistency of the
specification (no pending interfaces; a unique connected component graph).
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spec disconnect(HAS spec, (cr3, rintILight), (cr1, pintILight))
spec disconnect(HAS spec, (cr3, rintIT ime), (cr2, pintIT ime))
spec deleteRole(HAS spec, cr3)
spec addRole(HAS spec, cr3a)
spec replaceRole(HAS spec, cr1, cr1a)
spec connect(HAS spec, (cr3a, rintILight2), (cr1a, pintILight2))
spec connect(HAS spec, (cr3a, rintIIntensity), (cr1a, pintIIntensity))
spec connect(HAS spec, (cr3a, rintIT ime2), (cr2, pintIT ime))

Figure 35: Has specification coherence restoration plan

4.3.4. Change propagation to the assembly

The current version of the Has assembly is no more a valid instantiation
of the evolved Has configuration. Change has to be propagated at assembly
level to restore coherence (cf. Figure 36).

assm unbind(HAS assembly, (ci3, rintILampInst), (ci11, pintILampInst1))
assm unbind(HAS assembly, (ci3, rintILampInst), (ci12, pintILampInst2))
assm unbind(HAS assembly, (ci3, rintIClockInst), (ci2, pintIClockInst))
assm removeInstance(HAS assembly, ci3)
assm deployInstance(HAS assembly, ci3a, cl3a)
assm replaceInstance(HAS assembly, ci11, ci1a1)
assm replaceInstance(HAS assembly, ci12, ci1a2)
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a1, pintILampInst1a))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a1, pintIItensityInst1))
assm bind(HAS assembly, (ci3a, rintIClockInst), (ci2, pintIClockInst))
assm bind(HAS assembly, (ci3a, rintILamp2Inst), (ci1a2, pintILampInst2a))
assm bind(HAS assembly, (ci3a, rintIIntensity2Inst), (ci1a2, pintIItensityInst2))

Figure 36: Has assembly coherence restoration plan

In a similar way to specification coherence restoration, the Orchestrator
component instance (ci3 ) is disconnected and deleted. An AndroidOrchestra-
tor component instance (ci3a) is added to the assembly. Two AdjustableLight
component instances (ci1a1 ) and (ci1a2 ) are substituted for the existing
Light component instances (ci11 ) and (ci12 ). This restores the coherence
of the assembly with the configuration. The server interfaces of the compo-
nents are then bound to compatible provided interfaces, so that the assembly
remains consistent (no pending server interfaces; a unique connected compo-
nent graph).

4.4. Third experiment: runtime change

The third scenario addresses a runtime change. It corresponds to a
bottom-up evolution since the change is initiated at the lowest abstraction
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level. Because of a dry battery, the clock device in the building is out of
service. This environmental change induces the dysfunction of the clock1
driver (ci2 ). The objective is to find a solution to dynamically repair the
architecture in order to maintain the functionalities of the system.

Figure 37 shows the initial and evolved version of the Has assembly.

Figure 37: Evolving the Has assembly by component instance substitution

4.4.1. Initiated change

clock1 (ci2 ) must be replaced by another component instance that pro-
vides the same services. An instance of the AndroidClock component class,
androidClock1 (ci2a), is thus chosen to replace clock1. The initiated change
is handled by the following operations:

replaceInstance(HAS assembly, ci2, ci2a)

The solver then searches an evolution plan that reaches the following goal:

GOAL == global consistency ∧ global coherence ∧ ci2a ∈ assm components(HAS assembly) ∧
ci2 6∈ assm components(HAS assm)

4.4.2. Triggered change

The component instance replacement does not alter the consistency of
the assembly architecture. However, coherence with the configuration archi-
tecture has to be reestablished. Indeed, the evolved assembly architecture is
not a valid instantiation of the current configuration architecture since the
ci2a component instance does not instantiate the cl2 component class.
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4.4.3. Change propagation to the configuration

Change propagation induces the substitution of the AndroidClock com-
ponent class (cl2a) for the Clock component class (cl2 ), which amounts to
the following evolution plan:

replaceClass(HAS config, cl2, cl2a)

As connections are preserved by the substitution operation, the consistency
of the configuration is also preserved. The evolution plan thus includes no
other operation.

4.4.4. Change propagation to the specification

The component class substitution preserves the coherence between the
specification and the configuration. Indeed, when a component class imple-
ments a given role, any component subclass, as a substitute, also implements
the role. As a consequence, no change needs to be propagated to the speci-
fication.

4.5. Performance evaluation

The performance of the solver has been measured during the three exper-
iments, in order to evaluate the influence of our proposed heuristics. Tests
were run on a standard PC (2.5 GHZ Intel Core i5, 8 GB SDRAM) under
Windows 7. Test of the three evolution scenarios are then performed first
using DF and then using DF enhanced with heuristics (H-DF ) to compare
the results. Table 1 shows the average time in milliseconds of 5 runs for each
evolution scenario, using depth-first search without heuristics (DF ) and with
heuristics (H-DF ).

Change level DF (ms) H-DF (ms)

Exp 1

specLevel (initial) 3260 2100
configLevel 3254 1393
asmLevel 26738 1926

Exp 2

configLevel (initial) 4712 2537
specLevel 8733 1896
asmLevel TIME-OUT 1927

Exp 3

asmLevel (initial) 4747 1184
configLevel TIME-OUT 2351
specLevel (not affected) – –

Table 1: Performance evaluation

Timeout is set to 3 minutes. Results doubtlessly show the benefits of a
custom solver that integrates specific heuristics. The order and number of
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evolution rules may differ from a generated evolution plan to another (our
algorithms are not deterministic as they make random choices when sets of
equivalent elements are considered, such as a set of candidate main artifacts)
but all generated plans are valid and lead to the same goal state.

A more precise performance evaluation, based on a larger set of experi-
ments and a theoretical study of the combinatorial complexity of the search
space is needed. Performance is indeed an inherent limitation for search-
based software engineering, as the resolution time of solvers generally grows
exponentially depending on the size of the problems. Designing and inte-
grating new heuristics to cut down resolution time is promising (we can for
instance preferentially choose transitions that generate no or little incoher-
ence in the architecture model).

5. Related work

This section presents three areas of related work. The first area is that
of software architecture evolution which is the main theme of this work. It
presents a survey of the main state-of-the-art evolution approaches our work
can be compared to. The second area is that of formal modeling languages.
It presents a brief comparison of seven formal modeling languages including
B. The third area describes other approaches based on model transformation
and integration of semi-formal and formal methods. These approaches do
not necessarily focus on architecture evolution but they present interesting
alternatives from the technical point of view.

5.1. Software architecture evolution

Most of the approaches dealing with architecture evolution adopt an Adl
to model architectures and propose a mapping between the Adl and a run-
time framework in order to implement the change and enable dynamic evo-
lution. C2-SADEL [24], Darwin [25], ArchWare [26] and Plastik [27] fall into
this category. C2-SADEL models architectures in the C2 style [28] and pro-
vides multiple component subtyping mechanisms to favor reuse and enable
architecture evolution. Its tool support is Dradel, an environment that en-
ables the mapping between architectural description and the implementation
by translating them into Java code. The tool supports static evolution by
applying changes on architectural descriptions first and then implementing
them. The architecture analysis however is limited since no powerful anal-
ysis techniques were integrated. Darwin and ArchWare (which provides π-
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Adl [29] as an Adl) focus on modeling dynamic structures. They both rely
on π-calculus to define the semantics of architecture constructs and guar-
antee a reliable interaction between components and compile architecture
descriptions into code. ArchWare also proposes π-Arl [30] an architecture
refinement language to evolve architecture descriptions by stepwise refine-
ment. Plastik was also proposed to deal with dynamic reconfigurations. It
relies on Armani, an extension of the ACME [31] Adl to enable invariants
expression and reconfigurations properties. Compared to the previous ap-
proaches, Plastik has the advantage to map its Adl to OpenCOM [32], a
runtime component model dedicated to component-based programming and
proposing built-in reconfiguration operations. The main shortcoming of these
approaches is that they don’t consider changes as first-class elements and fo-
cus more on how to implement architecture evolution rather than specify,
analyze and propagate it. Moreover, adopted Adls hardly cover the entire
Cbsd process. The specification level (necessary to guide reuse) and assem-
bly level (that describes the software at runtime) are often missing. Finally,
the coherence between architectural descriptions and implementation is not
guaranteed since evolution is processed top-down only.

Recent work by Sanchez et al. [33] proposes an architecture-based re-
engineering approach to evolve and maintain legacy software. The principle
is to produce a high level architecture description of the legacy system so
that it becomes easy to reason about change and then reversely use the pro-
duced knowledge to modify source code. The approach is guided through a
bidirectional transformation and relies on Archery [34], an Adl for modeling
architecture patterns corresponding to translated code parts. Targetted at
legacy system re-engineering, this work is different from our proposal on the
evolution of component-based software systems developed by a reuse-based
process.

Other recent approaches show a particular interest to specifying architec-
ture evolution as first-class entities. A first example is the work of Tamazalit,
Le Goaer et al. [35, 36]. The authors introduce the notion of evolution styles,
first-class entities that can be specified and classified for reuse to evolve a par-
ticular family of systems. Evolution styles include evolution operations that
can be specialized, composed and instantiated to deal with change. Barnes
et al. [37] adopt a wider definition of evolution styles and introduce the con-
cept of evolution paths as a way to plan the evolution of domain-specific
software systems. A path is an evolution trace leading from an initial archi-
tecture to a desired target architecture. An evolution style refers to a family
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of evolution paths sharing common properties. It includes operations, con-
straints and functions to evaluate paths according to quality metrics. Path
constraints can be formally specified using the path constraint language, a
specific extension of LTL (Linear Temporal Logic). While the computability
of the language was proved, as far as we know, there is no existing model
checker to support the automated analysis of path constraints. The authors
also propose a solution [38] to automate evolution planning using PDDL [39]
(the Planning Domain Definition Language). However, this approach still
lacks automation since no translation from any Adl to PDDL specification
was proposed. Moreover, the evolution is specified and planned beforehand.
In our approach, changes are not necessarily expected and the architect in-
tervenes only to validate the work of the evolution manager.

Another closely related work is the one of Hansen, Ingstrup and oth-
ers [40, 41]. The authors propose an approach to model and analyze runtime
architectural change. They opt for a runtime architecture model that closely
maps to the OSGi 4 platform to facilitate implementation and for Alloy [42]
as a relational first-order logic modeling language to formalize the static
and dynamic (operations) concepts of the architecture model. The choice of
Alloy is motivated by its support for object-oriented modeling and its ac-
companying analyzer that enables automated verification. The objective is
to apply architectural changes without violating some predefined properties.
For this purpose, the authors model the reconfiguration planning as a pred-
icate satisfaction problem with pre- and post-conditions. Then, they run
the Alloy SAT solver to find sequences of the model instances satisfying the
problem where the first instance satisfies the pre-conditions and the last in-
stance satisfies the post-conditions. This work is similar to ours in the sense
that both aim to provide a reliable and automated way to handle architec-
tural changes. It proposes an interesting alternative for resolving evolution
using the constraint-solving technique. However, this work focuses only on
one level of change which is runtime. Moreover, the formalized architecture
model is dependent on OSGi. Finally, the work lacks automation, since no
automatic translation from Adl models to Alloy models was proposed.

4http://www.osgi.org/Main/HomePage
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5.2. Comparison of formal modeling languages

Formal modeling brings abstraction, precision and rigor to software sys-
tems. It intervenes at the very early stages of software development to give a
formal specification of system requirements. Resulting models constitute un-
ambiguous descriptions that enable software analysis, verification and valida-
tion. Several languages and methods were proposed to aid formal modeling.
Formal languages provide abstractions to represent concepts, properties over
them and possibly behavior. However, they differ in expressiveness, underly-
ing semantics and purpose. Some languages focus more on descriptions and
how to make formal modeling more accessible whereas others focus more on
automated analysis neglecting expressiveness. A good formal language must
be a compromise between both aspects. In the following, we compare seven
formal modeling languages. These languages are B [9], Z [43], Ocl [44],
Alloy [42], Vdm [45], Coq [46] and Agda [47].

B, Z and Vdm are quite similar in term of expressiveness since they
were basically designed for theorem-proving. All of them enable to express
properties practically in the same way and support almost the same types
(In addition, Vdm supports real numbers). However there are some subtle
differences between them. Z is more abstract while Vdm and B are more low
level and intended to be refined into code. Both Vdm and B adopt a similar
structure that realizes abstract state machines. They explicitly separate the
declarative (structure) from the dynamic (operations) part and, unlike Z,
they separate pre-conditions from post-conditions. B has the particularity
to modify variables by assignments like in programming languages while in
Vdm and Z, pre and post states must be explicit.

Coq and Agda are proof assistants designed for the verification of func-
tional programs. Unlike the previously mentioned formal modeling lan-
guages, Coq and Agda are implementations of type theories rather than set
theory. They support higher order logic, polymorphism, dependent types, as
well as inductive types. Set theoretic operators (e.g. ∪, ∩), for instance, are
not directly predefined in such systems. Unlike B and VDM, these languages
do not implement state machines. Therefore, there is no built-in structure
that explicitly defines variables, invariants and operations.

Ocl and Alloy are different and were designed for different purposes. Ocl
was basically developed to express constraints that can not be expressed us-
ing graphical notations on UML diagrams. It has an object-oriented notation
and heavily relies on navigation. Hence predicate expressions are sometimes
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verbose comparing to the mathematical notation adopted by the other lan-
guages. Alloy is a structural modeling language inspired by Z. It was designed
for supporting fully automated analysis. Being strictly first-order, Alloy is
less expressive than the other languages [48]. For instance, set of sets and
predicates over relations are not directly expressible with Alloy.

Regarding analysis support, all these languages are typed and hence sup-
port type-checking. Theorem-proving is supported by Coq, Agda, Z, B and
Vdm which were basically designed for software correctness. Model-checking
and constraint solving is only supported by B, with the ProB tool, and Al-
loy, with the Alloy analyzer. To some extent, Jaza [49], an animator for Z,
enables constraint-solving on small domains. However, Z is limited in terms
of model-checking capabilities. This is due to the high abstract nature of the
Z language making its handling challenging [50]. Nevertheless, continuous
attempts to build a model checker for Z are undertaken [51].

B seems to be the best compromise between expressiveness and analysis
support. Alloy could also be a good alternative in our case. However, re-
gardless its expressiveness, it presents another shortcoming. As witnessed in
Torlak et al. [52], Alloy lacks support of partial instances. Partial instances
are explicit representations of instances included in the specification of the
model. This is central in our approach since instances are generated automat-
ically from graphical models and injected in B specifications (so-called deep
embedding technique [53]). Montaghami et al. [54] argued that this feature
enables a number of capabilities such as test-driven development, regression
testing, modeling by example, and combined modeling and meta-modeling.
The authors also proposed a syntax extension of Alloy to support partial
instance definition but, as far as we know, this feature is not yet integrated
in the last version of Alloy [55].

5.3. Alternative formal approaches

Integration between semi-formal and formal methods is gaining more and
more interest in software engineering. On the one hand, semi-formal lan-
guages, such as Uml [56], offer graphical notations that significantly ease
modeling. On the other hand, formal modeling languages provide a strong
support for automated software analysis. Several works benefit from com-
bining both kinds of notation to validate their approaches.

Ledru et al. [57] propose an approach based on the transformation of Uml
into B to validate security policies for information systems. They use their
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B4MSecure 5 tool to generate B specifications corresponding to a security
model. Conjointly, they use ProB to validate security policy scenarios.

Keznikl et al. propose the ARCAS method [58], an automated approach
to generate connections solutions for middleware architectures. Given a con-
nector specification, the approach translates it into a corresponding Alloy
model and performs constraint-solving to find connector instances that real-
ize the specification.

Macedo et al. propose Echo [59], an Eclipse-based tool for model repair
and transformation using model finding. Given a set of meta-models with
internal constraints (specified using OCL) and a set of inter-model consis-
tency rules (specified using QVT-R [60] transformations), Echo can detect
inconsistencies on derived models and keep them consistent with their corre-
sponding meta-models and between them as well. The detection and repair
mechanism is based on translating MDE [61] artifacts (meta-models and their
annotations with OCL and QVT-R rules) to Alloy. The output is then ana-
lyzed using a procedure built on top of Alloy solver that generates consistent
models as close as possible to the original ones.

6. Conclusions and future work

Managing software architecture evolution throughout the whole software
lifecycle is a significant issue. This paper proposes an approach to man-
age the evolution of component-based software architectures. Thanks to the
three-level Dedal architecture model, our approach handles change at three
abstraction levels of software architectures: specification, implementation
and deployment. The evolution process is driven by an evolution manage-
ment model that captures changes initiated at any abstraction level, controls
their impact to preserve / restore consistency and propagates them to other
levels to maintain global coherence.

The proposed evolution management model is based on the B formal
language. Using our solver built on top of the ProB tool, it enables the gen-
eration of reliable evolution plans as sequences of change operations. The
feasibility of our approach is demonstrated by experimenting on three evolu-
tion scenarios that each addresses change in a different abstraction level.

The limitation of this work is its scalability. This limitation is classical in
comparable works as architecture descriptions can be considered as graphs

5http://b4msecure.forge.imag.fr/
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(of connected software components) the size of which can theoretically be
arbitrarily big. Establishing evolution plans therefore amounts to exploring
all possible change action combinations on these graphs to restore properties
that can be seen as (local or global) constraints on these graphs. Scalability
issue is an inherent limitation for search-based software engineering problems.
However, such limitation is mitigated by two factors. First, architecture
descriptions are often limited in size as architects prefer to split them in
intelligible parts of moderate size using hierarchical composition, an asset
of Cbsd [1]. Secondly, instead of using an off-the-shelf agnostic B solver,
we proposed our own solver that integrates problem-specific heuristics that
decrease the calculation time.

Threats to the validity of our approach lie in the example scenarios that
we have considered for experimental validation. Although, the examples
cover all kinds of scenarios, experimenting with real architecture descriptions
might reveal unforeseen issues (scalability, efficiency of heuristics, etc.). Fur-
ther experiments on real case studies is therefore necessary to fully validate
our approach.

As future work, we would like to extend our definition of the consistency
property in order to include behavioral consistency as described in Taylor et
al. [21] and thus cover all their identified five kinds of consistency. This would
amount in considering architectural protocols and component behavior.

Another interesting research direction would be to integrate the notion of
evolution style [36] in our evolution management model. The idea is to enable
the generation of multiple candidate evolution plans that can be evaluated
considering non-functional properties (e.g. quality, cost, time) as proposed
by Barnes et al. [37].

Regarding the technical aspect, we are investigating new heuristics to
improve the performance of our solver and reduce complexity.
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