
December 12, 2014 21:48

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

Automatic documentation of [mined] feature implementations

from source code elements and use case diagrams

with the REVPLINE approach

R. AL-msie’deen, M. Huchard and A.-D. Seriai

LIRMM / CNRS and Montpellier University
Montpellier - France

{al-msiedee, huchard, seriai}@lirmm.fr

C. Urtado and S. Vauttier

LGI2P / Ecole des Mines d’Alès
Nı̂mes, France

{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Received (31 August 2014)

Accepted (16 October 2014)

Companies often develop a set of software variants that share some features and differ

in other ones to meet specific requirements. To exploit the existing software variants
as a Software Product Line (SPL), a Feature Model of this SPL must be built as a

first step. To do so, it is necessary to define and document the optional and mandatory

features that compose the variants. In our previous work, we mined a set of feature
implementations as identified sets of source code elements. In this paper, we propose a

complementary approach, which aims to document the mined feature implementations

by giving them names and descriptions, based on the source code elements that form
feature implementations and the use-case diagrams that specify software variants. The

novelty of our approach is its use of commonality and variability across software variants,

at feature implementation and use-case levels, to run Information Retrieval methods in
an efficient way. Experiments on several real case studies (Mobile media and ArgoUML-

SPL) validate our approach and show promising results.

Keywords: Software variants; Software Product Line; Feature documentation; Code com-
prehension; Formal Concept Analysis; Relational Concept Analysis; Use-case diagram;
Latent Semantic Indexing; Feature Models.

1. Introduction

Similarly to car developers who propose a full range of cars with common charac-

teristics and numerous variants, software developers may cater to various needs and

propose as a result a software family instead of a single product. Such a software

family is called a Software Product Line (SPL) [1].

Software variants often evolve from an initial product, developed for and suc-

cessfully used by the first customer. These product variants usually share some

common features and differ regarding others. As the number of features and the

1

December 12, 2014 21:48

2 R. AL-msie’deen et al.

number of software variants grow, it is worth re-engineering them into a SPL for

systematic reuse [2].

The first step towards re-engineering software variants into SPL is to mine a

Feature Model (FM). To obtain such a FM, the common and optional features

that compose these variants have to be identified and documented. This consists in

(step 1) identifying, among source code elements, groups that implement candidate

features and (step 2) associating them with their documentation (i.e., a feature

name and description). In our previous work [3], we proposed an approach for step

1 which consists in mining features from the object-oriented source code of software

variants (the REVPLINE approacha). REVPLINE mines functional features as sets

of Source Code Elements (SCEs) (e.g., packages, classes, attributes, methods or

method bodies).

In this article, we address step 2. To assist a human expert in documenting the

mined feature implementations, we propose an automatic approach which associates

names and descriptions using the source code elements of feature implementations

and the use-case diagrams of software variants. Compared with existing work that

documents source code (cf. Section 2), the novelty of our approach is that we exploit

commonality and variability across software variants at feature implementation and

use-case levels in order to apply Information Retrieval (IR) methods in an efficient

way.

Considering commonality and variability across software variants enables to

group use-cases and feature implementations into disjoint and minimal clusters

based on Relational Concept Analysis (RCA). Each cluster consists of a subset

of feature implementations and their corresponding use-cases. Then, we use La-

tent Semantic Indexing (LSI) to measure similarities and identify which use-cases

best characterize the name and description of each feature implementation by using

Formal Concept Analysis (FCA). In the cases where use case diagrams or documen-

tation are not available, we propose an alternative approach, based on the names

of the source code elements that implement features.

The remainder of this paper is structured as follows: Section 2 presents the

state of the art and motivates our work. Section 3 briefly describes the technical

background which is used in our work. Section 4 outlines the feature documentation

process. Section 5 details the feature documentation process based on the use case

diagrams of variants step by step. Section 6 presents the feature documentation

process based on SCE names. Section 7 reports the experimentation and discusses

threats to the validity of our approach. Finally, Section 8 concludes and provides

perspectives for this work.

aREVPLINE stands for RE-engineering software Variants into a software Product LINE.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 3

2. State of the art

In our approach, we aim at documenting groups of source code elements that are the

result of a mining process. These groups of source code elements correspond to fea-

ture implementations. The comprehension or documentation of feature implemen-

tation is a complex problem-solving task [4]. We consider here that documentating

a feature is the process of analyzing the implementation of a feature to provide it

with either a name or a more detailed description based on software artifacts such

as use-case diagrams or identifier names. Related approaches are documentating

the source code of a single software, finding traceability links between source code

and documentation, and documentating mined features in software product lines.

This section presents research papers in these three fields. We then conclude this

state of the art by a synthesis which introduces the main objectives of our approach.

2.1. Source code documentation in a single software

Kebir et al. [5] propose to identify components from the object-oriented source

code of a single software. Their approach assigns names to the components in three

steps: extracting and tokenizing class names from the identified implementation

of a component, weighting words and building the component name by using the

strongest weighted tokens.

Kuhn [6] presents a lexical approach that uses the log-likelihood ratio of word

frequencies to automatically retrieve labels from source code. This approach can be

applied to compare several components (i.e., describing their differences as well as

their commonalities), a component against a normative corpus (i.e., providing labels

for components) and different versions of the same component (i.e., documenting the

history of a component). In Kuhn et al. [7], information retrieval techniques are used

to exploit linguistic information found in source code, such as identifier names and

comments, in order to enrich software analysis with the developers’ knowledge that

is hidden in the code. They introduce semantic clustering, a technique based on LSI

and clustering to group source artifacts (i.e., classes) that use similar vocabulary.

They call these groups semantic clusters and they interpret them as linguistic topics

that reveal the intention of the code. They compare the topics, identify links between

them, provide automatically retrieved labels (using LSI again to automatically label

the clusters with their most relevant terms). They finally use distribution maps to

illustrate how the semantic clusters are distributed over the system. Their work is

language independent as it works at the level of identifier names.

De Lucia et al. [8] propose an approach for source code labeling, based on IR

techniques, that identifies relevant words in the source code of a single software.

They apply various IR methods (such as VSM, LSI and Latent Dirichlet Allocation

(LDA)) to extract terms from class names by means of some representative words,

with the aim of facilitating code comprehension or improving visualization. This

work investigates to what extent IR-based source code labeling would identify rel-

evant words in the source code, compared to the words a human would manually

December 12, 2014 21:48

4 R. AL-msie’deen et al.

select during a program comprehension task.

A technique for automatically summarizing source code by leveraging the lexical

and structural information in the code is proposed in Haiduc et al. [9]. Summaries

are obtained from the content of a document by selecting the most important in-

formation in that document. The goal of this approach is the automatic generation

of summaries for source code entities.

Falleri et al. [10] propose a wordNet-like approach to extract the structure of

a single software using relationships among identifier names. The approach con-

siders natural language processing techniques which consist of a tokenization pro-

cess (straightforward decomposition technique by word markers, e.g., case changes,

underscore, etc.), part of speech tagging and rearranging order of terms by term

dominance order rules based on part of speech information.

Sridhara et al. [11] present a novel technique to automatically generate comments

for Java methods. They use the signature and body of a method (i.e., method calls)

to generate a descriptive natural language summary of the method. The developer

remains responsible for verifying the accuracy of generated summaries. The objec-

tive of this approach is to ease program comprehension. Authors use natural lan-

guage processing techniques to automatically generate leading method comments.

Studies have shown that good comments help programmers understand quickly

what a method does, thus assisting program comprehension and software mainte-

nance.

2.2. Source code-to-documentation traceability links

Grechanik et al. [12] propose a novel approach for partially automating the process

of recovering traceability links (TLs) between types and variables in Java programs

and elements of use-case diagrams (UCDs). Authors evaluate their prototype imple-

mentation on open-source and commercial software, and their results suggest that

their approach can recover many traceability links with a high automation degree

and precision. As UCDs are widely used to describe the functional requirements of

software products, these traces help programmers understand the code that they

maintain and modify.

Marcus et al. [13] use LSI to recover traceability links between source code

and documentation. The documentation consists of requirement documents which

describe elements of the problem domain such as manuals, design models or test

suites. This documentation is supposed to have been written before implementation

and does not include any parts of the source code.

Diaz et al. [14] capture relationships between source code artifacts to improve

the recovery of traceability links between documentation and source code. They

extract the author of each source code component and, for each author, identify the

”context” she/he worked on. Thus, to link documentation and source code artifacts

(i.e., use cases and classes), they compute the similarity between these use cases and

the authors’ contexts. When retrieving related classes using a standard IR-based

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 5

approach (e.g., LSI or VSM) they reward all the classes developed by authors whose

contexts are most similar to use cases.

Xue et al. [2] automatically identify traceability links between a given collection

of features and a given collection of source code variants. They consider feature

descriptions as an input.

2.3. Documentation of mined features in SPL

Braganca and Machado [15] describe an approach for automating the transformation

of UML use-cases into FMs. In their work, each use-case is mapped to a feature.

Their approach explores the include and extend relationships between use-cases to

discover relationships between features. Their work assumes that the feature name

is given by that of the use-case.

Yang et al. [16] analyze open source applications for multiple domains with sim-

ilar functionalities. They propose an approach to recover domain feature models

using data access semantics, FCA, concept pruning/merging, structure reconstruc-

tion and variability analysis. After concept pruning/merging, analysts examine each

of the generated candidate feature (i.e., concept cluster) to evaluate its relevance.

Meaningless candidate features are removed, whilst meaningful candidate features

are chosen as domain features. Then analysts name each domain feature with the

help of the corresponding concept intent and extent. After these manual examina-

tion and naming, all domain features bear significant names denoting their business

functions.

Paškevičius et al. [17] present a framework for an automated derivation of FMs

from existing software artifacts (e.g., classes, components, libraries, etc.), which in-

cludes a formal description of FMs, a program-feature relation meta-model and a

method for FM generation based on feature dependency extraction and clustering.

FMs are generated as Feature Description Language (FDL) descriptors and as Pro-

log rules. They focus on reverse engineering of source code to FMs and assume that

feature names are provided by that of the class or component.

Ziadi et al. [18] propose a semi-automatic approach to identify features from

object-oriented source code. Their approach takes the source code of a set of prod-

uct variants as its input. They manually assign names to the identified feature

implementations by relying on the feature names that are used in the original FM.

In our previous work [19, 3, 20], we manually propose feature names for the

mined feature implementations, based on the code elements of each feature imple-

mentation.

Davril et al. [21] build FMs from product descriptions. Extracting FMs from

these informal data sources includes mining feature descriptions from sets of prod-

uct descriptions, naming the features in a way that is understandable to human

users and then discovering relations between features in order to organize them

hierarchically into a comprehensive model. The identified features correspond to

clusters of descriptions. Authors propose a method to name a cluster using the

December 12, 2014 21:48

6 R. AL-msie’deen et al.

most frequently and less verbose occurring phrase in the descriptors of this cluster.

2.4. Synthesis

Most existing approaches are designed to extract labels, names, topics or to identify

traceability links between code and documentation artifacts in a single software

system. To document mined features, most existing approaches manually assign

feature names to feature implementations (without any further description) and

they often rely on atomic source code element names (e.g., class or component

names). The most advanced approach for automatic feature description extraction

is that of [21] which works on informal product descriptions.

Our work addresses the problem of documenting features mined from several

variants of a software system. Our mined feature implementations are sets of source

code elements that are more formal artifacts than the product descriptions used in

[21] and give complementary information as compared to use case diagrams [15].

Our approach relies on commonality and variability across the variants to apply in-

formation retrieval methods more efficiently than in a single software system. Our

input data are the source code and use case diagrams of the variants. We do not

consider any prior knowledge about features contrarily to [2]. We aim at automat-

ically assigning a name and a description to each mined feature implementation

using several techniques (Formal Concept Analysis, Relational Concept Analysis

and Latent Semantic Indexing), whereas several approaches manually assign names

[16, 18, 3]. Feature documentation consists in use case names, tokens from the source

code elements and use case descriptions.

3. Technical background

This section provides a glimpse on FCA, RCA and LSI. It also shortly describes

the example that illustrates the remaining sections of the paper.

3.1. Formal and Relational Concept Analysis

Formal Concept Analysis (FCA) is a classification technique that takes as an input

data sets describing objects and their attributes and extracts concepts that are

maximal groups of objects (concept extents) sharing maximal groups of attributes

(concept intents) [22]. It has many applications in software engineering [23, 24, 25].

The extracted concepts are linked by a partial order relation, which represents

concept specialization, as an order which has a lattice structure (called the concept

lattice). In the concept lattice, each attribute (resp. each object) is introduced by

a unique concept and inherited by its sub-concepts (resp. by its super-concepts).

In figures, objects and attributes are often represented only in their introducing

concept for the sake of simplicity. Rather than using the whole concept lattice,

which is often a large and complex structure (exponential number of concepts,

considering objects and attributes, in the worst case), we use a sub-order called the

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 7

AOC-poset, which is restricted to the concepts that introduce at least one object

or one attribute. The interested reader can find more information about our use of

FCA in [3].

Relational Concept Analysis (RCA) [26] is an iterative version of FCA in which

objects are classified not only according to attributes they share, but also according

to relations between them (cf. Section 5.1). Other close approaches are [27, 28, 29].

In the RCA framework, data are encoded into a Relational Context Family

(RCF), which is a pair (K,R), where K is a set of formal (object-attribute) contexts

Ki = (Oi, Ai, Ii) and R is a set of relational (object-object) contexts rij ⊆ Oi×Oj ,

where Oi (domain of rij) and Oj (range of rij) are the object sets of the contexts

Ki and Kj , respectively (cf. Table 3). A RCF is iteratively processed to generate,

at each step, a set of concept lattices. As a first step, concept lattices are built

using the formal contexts only. Then, in the following steps, a scaling mechanism

translates the links between objects into conventional FCA attributes and derives

a collection of lattices whose concepts are linked by relations (cf. Figure 5).

To apply FCA and RCA, we use the Eclipse eRCA platformb.

3.2. Latent Semantic Indexing

Information Retrieval (IR) refers to techniques that compute textual similarity be-

tween documents. Textual similarity is computed based on the occurrences of terms

in documents [30]. When two documents share a large number of terms, those doc-

uments are considered to be similar. Different IR techniques have been proposed,

such as Latent Semantic Indexing (LSI) and Vector Space Model (VSM), to compute

textual similarity.

As proposed by [2], we use LSI to group together software artifacts that pertain

to the implementation or the documentation of a similar, thus considered common,

conceptc.

To do so, software artifacts are regarded as textual documents. Occurrences of

terms are extracted from the documents in order to calculate similarities between

them and then classify together similar documents (cf. Section 5.2).

The heart of LSI is the singular value decomposition technique. This technique

is used to mitigate noise introduced by stop words (like ”the”, ”an”, ”above”) and

overcome two issues of natural language processing: synonymy and polysemy.

The effectiveness of IR methods is usually measured by metrics including recall,

precision and F-measure (cf. Equations 1, 2 and 3). In this work, for a given use-

case (query), recall is the percentage of correctly retrieved feature implementations

(documents) to the total number of relevant feature implementations, while pre-

cision is the percentage of correctly retrieved feature implementations to the total

number of retrieved feature implementations. F-Measure defines a trade-off between

bThe eRCA : http://code.google.com/p/erca/
cTo set our approach up, we developed our own LSI tool, available at https://code.google.com/

p/lirmmlsi/

http://code.google.com/p/erca/
https://code.google.com/p/lirmmlsi/
https://code.google.com/p/lirmmlsi/

December 12, 2014 21:48

8 R. AL-msie’deen et al.

precision and recall, that gives a high value only when both recall and precision are

high.

Recall =
|{relevant documents}

⋂
{retrieved documents}|

|{relevant documents}|
(1)

Precision =
|{relevant documents}

⋂
{retrieved documents}|

|{retrieved documents}|
(2)

F −Measure = 2× Precision ·Recall

Precision + Recall
(3)

All measures have values in [0%, 100%]. When recall equals 100%, all relevant

feature implementations are retrieved. However, some retrieved feature implemen-

tations may not be relevant. If precision equals 100%, all retrieved feature imple-

mentations are relevant. Nevertheless, all relevant feature implementations may not

be retrieved. When F-Measure equals 100%, all relevant feature implementations

are retrieved.

The interested reader can find more information about our use of LSI in [3].

3.3. The Mobile Tourist Guide Example

In this example, we consider four software variants of the Mobile Tourist Guide

(MTG) application. These variants enable users to inquire about tourist information

on mobile devices. MTG 1 supports core MTG functionalities: view map, place

marker on a map, view direction, launch Google map and show street view. MTG 2

has the core MTG functionalities and a new functionality called download map

from Google. MTG 3 has the core MTG functionalities and a new functionality

called show satellite view. MTG 4 supports search for nearest attraction, show next

attraction and retrieve data functionalities, together with the core ones. Table 1

describes the sets of functionnalities (use-cases) implemented by the different MTG

software variants. Figure 1 shows the corresponding use-case diagrams.

In this example, we can observe that the use-case diagrams of software vari-

ants show commonality and variability at use-case level (i.e., functionalities). This

prompts to extract feature documentation from the use-case diagrams of software

variants. Table 2 shows the mined feature implementations from MTG software

variants. In the examples, mined feature implementations are named using the same

names as that of the corresponding use-case for the sake of clarity. But as mentioned

before, mined feature names are not known beforehand. We only use the mined fea-

ture implementations composed of Source Code Elements (SCEs) and the use-case

diagrams of software variants as inputs for the documentation process.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 9

Table 1. The use-cases of MTG software variants.

V
ie

w
m

ap

P
la

ce
m

a
rk

er
o
n

a
m

a
p

V
ie

w
d
ir

ec
ti

o
n

L
a
u
n
ch

G
o
og

le
m

a
p

S
h
ow

st
re

et
v
ie

w

D
ow

n
lo

ad
m

ap
fr

o
m

G
o
o
g
le

S
h
ow

sa
te

ll
it

e
v
ie

w

S
ea

rc
h

fo
r

n
ea

re
st

a
tt

ra
ct

io
n

S
h
ow

n
ex

t
a
tt

ra
ct

io
n

R
et

ri
ev

e
d
at

a

Mobile Tourist Guide 1 × × × × ×
Mobile Tourist Guide 2 × × × × × ×
Mobile Tourist Guide 3 × × × × × ×
Mobile Tourist Guide 4 × × × × × × × ×

Product-by-use case matrix

(× use-case is in the product)

Fig. 1. The use-case diagrams of the MTG software variants.

4. The Feature Documentation Process

As previously mentioned, we aim at documenting mined feature implementations

by using use-case diagrams that document a set of software variants. We rely on the

same assumption as in the work of [15] stating that each use-case corresponds to a

feature. The feature documentation process uses lexical similarity to identify which

use-case best characterizes the name and description of each feature implementa-

tion. As performance and efficiency of the IR technique depend on the size of the

search space, we take advantage of the commonality and variability between soft-

ware variants to group feature implementations and the corresponding use-cases in

the software family into disjoint, minimal clusters (e.g., Concept 1 of Figure 5). We

call each disjoint minimal cluster a Hybrid Block (HB). After reducing the search

December 12, 2014 21:48

10 R. AL-msie’deen et al.

Table 2. The mined feature implementations from MTG software variants.

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

1
:

V
ie

w
m

a
p

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

2
:

P
la

ce
m

a
rk

er
o
n

a
m

a
p

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

3
:

V
ie

w
d
ir

ec
ti

on

F
ea

tu
re

Im
p
le

m
en

ta
ti

on
4:

L
a
u
n
ch

G
o
o
g
le

m
a
p

F
ea

tu
re

Im
p
le

m
en

ta
ti

on
5
:

S
h
ow

st
re

et
v
ie

w

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

6
:

D
ow

n
lo

a
d

m
ap

fr
o
m

G
o
o
g
le

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

7
:

S
h
ow

sa
te

ll
it

e
v
ie

w

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

8:
S
ea

rc
h

fo
r

n
ea

re
st

a
tt

ra
ct

io
n

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

9
:

S
h
ow

n
ex

t
a
tt

ra
ct

io
n

F
ea

tu
re

Im
p
le

m
en

ta
ti

o
n

10
:

R
et

ri
ev

e
d
a
ta

Mobile Tourist Guide 1 × × × × ×
Mobile Tourist Guide 2 × × × × × ×
Mobile Tourist Guide 3 × × × × × ×
Mobile Tourist Guide 4 × × × × × × × ×

Product-by-feature implementation matrix

(× feature implementation is in the product)

space to a set of hybrid blocks, we measure textual similarity to identify, within

each hybrid block, which use-case may provide a name and a description of each

feature implementation.

For a product variant, our approach takes as inputs the set of use-cases that

documents the variant and the set of mined feature implementations that are pro-

duced by REVPLINE. Each use-case is defined by its name and description. This

information represents domain knowledge that is usually available as software doc-

umentation (i.e., requirement model). In our work, the use-case description consists

of a short paragraph in a natural language. For example, the retrieve data use-case

of Figure 1 is described by the following paragraph, ”the tourist can retrieve infor-

mation and a small image of the attraction using his/her mobile phone. In addition,

the tourist can store the current view of the map in the mobile phone”.

Our approach provides a name and a description for each feature implementation

based on a use-case name and description. Each use-case is mapped onto a functional

feature thanks to our assumption. If two or more use-cases have a relation with the

same feature implementation, we consider them all as the documentation for this

feature implementation.

Figure 2 shows an overview of our feature documentation process. The first

step of this process identifies hybrid blocks based on RCA (cf. Section 5.1). In the

second step, LSI is applied to determine similarity between use-cases and feature

implementations (cf. Section 5.2). FCA is then used to build use-case clusters. Each

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 11

Fig. 2. The feature documentation process.

cluster identifies a name and a description for feature implementation (cf. Section

5.3).

5. Feature Documentation Step by Step

In this section, we describe the feature documentation process step by step. Feature

name and description are identified through three steps as detailed in the following.

5.1. Identifying Hybrid Blocks of Use-cases and Feature

Implementations via RCA

Mined feature implementations and use-cases are clustered into disjoint minimal

clusters (i.e., hybrid blocks) to apply LSI on reduced search spaces. RCA is used to

build the clusters, based on the commonality and variability in software variants:

use-cases and feature implementations that are common to all software variants;

December 12, 2014 21:48

12 R. AL-msie’deen et al.

use-cases and feature implementations that are shared by a set of software variants,

but not all variants; use-cases and feature implementations that are held by a single

variant (cf. Figure 3).

Fig. 3. The common, shared and unique use-cases (resp. feature implementations) across software
product variants.

An RCF is automatically generated from the use-case diagrams and the mined

feature implementations associated with software variantsd. The RCF used in our

approach contains two formal contexts and one relational context, as illustrated in

Table 3. The first formal context represents the use-case diagrams: objects are use-

cases and attributes are software variants. The second formal context represents

feature implementations: objects are feature implementations and attributes are

software variants. The relational context (i.e., appears-with) indicates which use-

case appears in the same software variant as a feature implementation.

For the RCF in Table 3, the two lattices of the Concept Lattice Family (CLF) are

represented in Figure 4 and a close-up view is represented in Figure 5. An example

of a hybrid block is given in Figure 5 (the left dashed block), which gathers a set

of use-cases (from the extent of Concept 1 in the Use case Diagrams lattice) that

always appear with a set of feature implementations (from the extent of Concept 6

in the Feature Implementations lattice). The relation between the two concepts is

represented in Concept 1 via the relational attribute appears-with:Concept 6. As

shown in Figure 5, RCA enables to reduce the search space by exploiting common-

ality and variability across software variants. In our work, we filter the CLF from

bottom to top to get a set of hybrid blockse.

dSource code : https://code.google.com/p/rcafca/
eSource code : https://code.google.com/p/fecola/

https://code.google.com/p/rcafca/
https://code.google.com/p/fecola/

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 13

Table 3. The RCF for features documentation.

Use case Diagrams M
T

G
1

M
T

G
2

M
T

G
3

M
T

G
4

View Map × × × ×
Launch Google Map × × × ×
View Direction × × × ×
Show Street View × × × ×
Place Marker on Map × × × ×
Download Map ×
Show Satellite View ×
Show Next Attraction ×
Search For nearest attraction ×
Retrieve Data ×

Feature Implementations M
T

G
1

M
T

G
2

M
T

G
3

M
T

G
4

Feature Implementation 1 × × × ×
Feature Implementation 2 × × × ×
Feature Implementation 3 × × × ×
Feature Implementation 4 × × × ×
Feature Implementation 5 × × × ×
Feature Implementation 6 ×
Feature Implementation 7 ×
Feature Implementation 8 ×
Feature Implementation 9 ×
Feature Implementation 10 ×

Relational context: appears-with F
ea

tu
re

Im
p

le
m

en
ta

ti
on

1

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

2

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

3

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

4

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

5

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

6

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

7

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

8

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

9

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

10

View Map × × × × ×
Launch Google Map × × × × ×
View Direction × × × × ×
Show Street View × × × × ×
Place Marker on Map × × × × ×
Download Map ×
Show Satellite View ×
Show Next Attraction × × ×
Search For Nearest Attraction × × ×
Retrieve Data × × ×

5.2. Measuring the Lexical Similarity Between Use-cases and

Feature Implementations via LSI

Each hybrid block created during previous step consists of a set of use-cases and

a set of feature implementations. Which use-cases characterize the name and de-

scription of each feature implementation needs to be identified. To do so, we use

textual similarity between use-cases and feature implementations. This similarity

measure is calculated using LSI. We consider that a use-case corresponding to a fea-

ture implementation should be lexically closer to this feature implementation than

to others. Similarity between use-cases and feature implementations in the hybrid

blocks is computed in three steps as detailed below.

December 12, 2014 21:48

14 R. AL-msie’deen et al.

Fig. 4. The concept lattice family of relational context family in Table 3.

Fig. 5. Parts of the CLF deduced from Table 3.

5.2.1. Building the LSI Corpus

In order to apply LSI, we build a corpus that represents a collection of documents

and queries (cf. Figure 6). In our work, each use-case name and description in

the hybrid block represents a query and each feature implementation represents a

document.

This document contains all the words extracted from the SCE names in the

feature implementation as a result of splitting them using a tokenization scheme

(Camel-case). Regardless of their location in the SCE names, we store all the words

in the document. For example, in the SCE name ManualTestWrapper all words are

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 15

Fig. 6. Constructing a raw corpus from hybrid block.

important: manual, test and wrapper. This process is applied to all feature imple-

mentations. Our approach creates a query for each use-case. This query contains

the use-case name and its description.

To be processed, documents and queries must be normalized as follows: stop

words, articles, punctuation marks, or numbers are removed; text is tokenized and

lower-cased; text is split into terms; stemming is performed (e.g., removing word

endings); terms are sorted alphabetically. We use WordNetf to do part of the pre-

processing (e.g., stemming and removal of stop words).

The most important parameter of LSI is the number of term-topics (i.e., k-

Topics) chosen. A term-topic is a collection of terms that co-occur often in docu-

ments of the corpus, for example {user, account, password, authentication}. In our

work, the number of k-Topics is equal to the number of feature implementations

for each corpus.

5.2.2. Building the Term-document and the Term-query Matrices for each

Hybrid Block

The term-document matrix is of size m × n, where m is the number of terms ex-

tracted from feature implementations and n is the number of feature implementa-

tions (i.e., documents) in a corpus. The matrix values indicate the number of oc-

fhttp://wordnet.princeton.edu/

http://wordnet.princeton.edu/

December 12, 2014 21:48

16 R. AL-msie’deen et al.

currences of a term in a document, according to a specific weighting scheme. In our

work, terms are weighted using the TF-IDF function (the most common weighting

scheme) [2]. The term-query matrix is of size m×n, where m is the number of terms

that are extracted from use-cases and n is the number of use-cases (i.e., queries) in

a corpus. An entry in the term-query matrix refers to the weight of the ith term in

the jth query.

Table 4. The term-document and the term-query matrices of Concept 1 in Figure 5.

F
ea

tu
re

Im
p

le
m

en
t.

1

F
ea

tu
re

Im
p

le
m

en
t.

2

F
ea

tu
re

Im
p

le
m

en
t.

3

F
ea

tu
re

Im
p

le
m

en
t.

4

F
ea

tu
re

Im
p

le
m

en
t.

5

device 1 0 0 0 1

direction 0 0 0 6 0

google 1 0 0 0 0

launch 4 0 0 0 0

map 1 2 0 0 4

marker 0 6 0 0 0

mobile 1 0 0 0 1

place 0 3 0 0 0

show 0 0 2 0 0

street 0 0 5 0 0

tourist 1 1 1 1 1

view 0 0 1 2 5

The term-document matrix

L
au

n
ch

G
o
og

le
M

ap

P
la

ce
M

ar
k
er

o
n

M
a
p

S
h

ow
S
tr

ee
t

V
ie

w

V
ie

w
D

ir
ec

ti
on

V
ie

w
M

ap

device 1 0 0 0 1

direction 0 0 0 8 0

google 3 0 0 0 0

launch 3 0 0 0 0

map 2 2 1 1 5

marker 0 3 0 0 0

mobile 1 0 0 0 1

place 0 3 0 0 0

show 0 0 3 0 0

street 0 0 5 0 0

tourist 1 1 1 1 1

view 0 0 1 3 5

The term-query matrix

In the term-document matrix (in left-hand side of Table 4), the direction term

appears 6 times in the Feature Implementation 4 document. In the term-query

matrix (in right-hand side of Table 4), the direction term appears 8 times in the

view direction query.

5.2.3. Building the Cosine Similarity Matrix

Similarity between documents in a corpus is measured by the cosine of the angle

between their corresponding term vectors [31], as given by Equation 4, where dq is

a query vector, dj is a document vector and Wi,q and Wi,j go over the weights of

terms in the query and document respectively.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 17

cosine similarity (dq, dj) =

−→
dq ·
−→
dj

|
−→
dq||
−→
dj |

=

n∑
i=1

Wi,q ∗Wi,j√
n∑

i=1

W 2
i,q

√
n∑

i=1

W 2
i,j

(4)

Similarity between use-cases and feature implementations in each hybrid block

is thus defined by a cosine similarity matrix which columns (documents) represent

feature implementations and rows (queries) use-cases [3].

Table 5. The cosine similarity matrix of Concept 1 in Figure 5.

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

1

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

2

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

3

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

4

F
ea

tu
re

Im
p

le
m

en
ta

ti
o
n

5

Launch Google Map 0.861933577 0.0137010 0 0 0.152407

Place Marker on Map 0.01114798 0.9480070 0 0 0.085939

Show Street View 0.004088722 0.0051128 0.98581691 0.00571 0.070920

View Direction 0.00296571 0.0037085 0.0069484 0.999139665 0.108597

View Map 0.114676597 0.0627020 0.039159941 0.070025418 0.993111

Results are represented as a directed graph. Use-cases (resp. feature implemen-

tations) are represented as vertices and similarity links as edges. The degree of

similarity appears as weights on the edges (cf. Figure 7). This graph is only used

for visualization purposes.

5.3. Identifying Feature Name via FCA

Having the cosine similarity matrix, we use FCA to identify, in each hybrid block,

which use-cases and feature implementations are related. To transform a (numerical)

cosine similarity matrix into a (binary) formal context, we use a 0.70 threshold

(after having tested many threshold values). This means that only pairs of use-

cases and feature implementations having similarity greater than or equal to 0.70

are considered related. Table 6 shows the formal context obtained by transforming

the cosine similarity matrix corresponding to the hybrid block of Concept 1 from

Figure 5.

For the Concept 1 hybrid block of Figure 5 the number of term-topics of LSI

is equal to 5. In the formal context associated with this hybrid block, the ”Launch

Google Map” use-case is linked to the ”Feature Implementation 1” feature imple-

mentation because their similarity equals 0.86, which is greater than the threshold.

December 12, 2014 21:48

18 R. AL-msie’deen et al.

Fig. 7. The lexical similarity between use-cases and feature implementations as a directed graph.

Table 6. Formal context of Concept 1 in Figure 5.

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

1

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

2

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

3

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

4

F
ea

tu
re

Im
p

le
m

en
ta

ti
on

5

Launch Google Map ×
Place Marker on Map ×
Show Street View ×
View Direction ×
View Map ×

On the contrary, the ”View Direction” use-case and the ”Feature Implementation 5”

feature implementation are not linked because their similarity equals 0.10, which is

less than the threshold. The resulting AOC-poset is composed of concepts whose

extent represents the use-case name(s) and intent represents the feature implemen-

tation(s). In this simple example, there is a one-to-one association between use case

names and feature implementations, but in the general case, we may have several

use case names associated with several feature implementations.

For the MTG example, the AOC-poset of Figure 8 shows five non comparable

concepts (that correspond to five distinct features) mined from a single hybrid block

(Concept 1 from Figure 5). The same feature documentation process is used for each

hybrid block.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 19

Fig. 8. The documented features from Concept 1.

6. Naming Feature Implementation Based on SCE Names

In our approach, we consider that use-case diagrams or other kinds of documentation

(i.e., design documents) are not always available. In case they are not, we use the

source code of the mined features to automatically generate feature names and

documentations.

We adapt the process proposed in [5]. Their work identifies component names

based on class names in a single software. In our work, we extract a name for each

feature implementation from the names given to its SCEs. We identify the name in

three steps:

1. Extracting and tokenizing SCE names.

2. Weighting tokens.

3. Composing the feature name.

Our approach can be applied at any code granularity level (package, class, at-

tribute, method, local variable, method invocation or attribute access).

• Extracting and tokenizing SCE names. At this step, the names of all the

SCEs found in the feature implementation are extracted. Then, each SCE name

is split into tokens, using a camel-case scheme. For example getMinimumSupport

is split into get, Minimum and Support. This is a simple but common identifier

splitting algorithm [32], conforming to programming best practices.

• Weighting tokens. At this step, a weight is assigned to each extracted token.

A high weight (1.0) is given to the first word in a SCE name. A medium weight

(0.7) is given to the second word in a SCE name. Finally a small weight (0.5) is

given to the other words.

• Composing the feature name. In this step, a feature name is built using the

highest weighted words.

The number of words used in the feature name is chosen by an expert. For

example, the expert can select the top two words to construct the feature name.

When many tokens have the same weight, all possible combinations are presented

to the expert and he can choose the most relevant one. Table 7 shows an example

December 12, 2014 21:48

20 R. AL-msie’deen et al.

of feature name proposals for the show street view feature implementation. In this

example, the expert assigns a feature name based on the top three tokens. The

assigned name for this feature implementation is eventually StreetShowView.

Table 7. SCE names, tokens, weight and highest weighted tokens for the show street view feature

implementation.

Token/Weight

SCE Name T
1/

w
=

1
.0

T
2/

w
=

0.
7

T
3/

w
=

0
.5

T
4/

w
=

0.
5

ShowStreetView show Street View

StreetPosition Street Position

ChangeStreetSettings Change Street Settings

getStreetAddress get Street Address

setStreetAddress set Street Address

ShowNearestStreet show Nearest Street

ShowNextStreet show Next Street

retrieveStreetData retrieve Street Data

ShowStreet show Street

updateStreetInfo update Street Info

ViewStreetMap View Street Map

ViewStreetPositionInfo View Street Position Info

Token Total Weight Top 3 Top 4

Show 4 × ×
Street 8 × ×
View 2.5 × ×
Position 1.2 ×
Change 1

Settings 1

get 1

Address 1

set 1

Nearest 0.7

Next 0.7

retrieve 1

Data 0.5

update 1

Info 1

Map 0.5

7. Experimentation

7.1. Experimental setup

To validate our approach, we ran experiments on two Java open-source applications:

Mobile media software variants (small systems) [33] and ArgoUML-SPL (large sys-

tems) [34]. We used 4 variants for Mobile media and 10 for ArgoUML. These two

case studies interestingly implement variability at different levels: class and method

levels. In addition, these case studies are well documented: their use-case diagrams

and FMs are available for comparison and validation of our resultsg. Table 8 sum-

marizes the obtained results.

7.2. Results

In these two case studies, we observe that the recall values are 100% for all features:

this means that our approach efficiently associates uses cases with their implemen-

tations in the software. Precision values are in [50% - 100%]: similarity between a

use-case and several features implementation may be high, when they pertain to

the same application domain and thus use common vocabulary, leading to ill as-

sociations. F-Measure values are consequently in [66% - 100%]. In most cases, the

gCase studies and code : http://www.lirmm.fr/CaseStudy

http://www.lirmm.fr/CaseStudy

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 21

Table 8. Features documented from case studies.

Evaluation Metrics

F
ea

tu
re

N
am

e

H
y
b

ri
d

b
lo

ck
#

k
-T

op
ic

s

R
ec

al
l

P
re

ci
si

on

F
-M

ea
su

re

Mobile Media

1 Delete Album HB 1 4 100% 100% 100%

2 Delete Photo HB 1 4 100% 50% 66%

3 Add Album HB 1 4 100% 100% 100%

4 Add Photo HB 1 4 100% 50% 66%

5 Exception handling HB 2 1 100% 100% 100%

6 Count Photo HB 3 3 100% 50% 66%

7 View Sorted Photos HB 3 3 100% 50% 66%

8 Edit Label HB 3 3 100% 100% 100%

9 Set Favourites HB 4 2 100% 50% 66%

10 View Favourites HB 4 2 100% 50% 66%

ArgoUML-SPL

1 Class diagram HB 1 1 100% 100% 100%

2 Logging HB 2 2 100% 50% 66%

3 Cognitive support HB 2 2 100% 100% 100%

4 Deployment diagram HB 3 1 100% 100% 100%

5 Collaboration diagram HB 4 2 100% 50% 66%

6 Sequence diagram HB 4 2 100% 50% 66%

7 State diagram HB 5 1 100% 100% 100%

8 Activity diagram HB 6 2 100% 100% 100%

9 Use case diagram HB 6 2 100% 100% 100%

contents of hybrid blocks are in the range of [1−4] use-cases and feature implemen-

tations: this validates RCA as a valid technique for building small search spaces in

order to efficiently compute lexical similarity. Lexical similarity also proves to be a

suitable tool, as shown by high recall, which confirms that a common vocabulary is

used in use-case descriptions and feature implementations.

In our work, we cannot use a fixed number of topics for LSI because hybrid

blocks (clusters) have different sizes. The column (k-Topics) in Table 8 represents

the number of term-topics.

All feature names produced by our approach are presented in the column (Fea-

ture Name) of Table 8, as built from names of use-cases. For example, in the FM

of Mobile media [33] there is a feature called sorting. The name proposed by our

approach for this feature is view sorted photos and its description is ”the device

sorts the photos based on the number of times photo has been viewed”.

7.3. Threats to validity

There is a limit to the use of FCA as a clustering technique. Cosine similarity

matrices are transformed into formal (binary) contexts thanks to a fixed threshold.

December 12, 2014 21:48

22 R. AL-msie’deen et al.

So if similarity between the query and the document is greater than or equals 0.70

the two documents are considered similar. By contrast, if similarity is less than

the threshold (i.e., 0.69) the two documents are considered dissimilar. This sharp

threshold effect may affect the quality of the result, since a similarity value of

0.99 (resp. 0.69) is treated as a similarity value 0.70 (resp. 0). Adaptive and fuzzy

threshold schemes should be studied to improve precision without impacting the

high recall of our approach.

In our approach we consider that each use-case corresponds to a functional

feature. However, several use-cases may be implemented by a single feature. In

this case all these use-cases should be considered as relevant documentation for

this feature. Our approach should be improved with other techniques to extract a

unique name and a compound description.

Naming a feature using the names of the SCEs in its implementation is not

always reliable. In our approach, we rely on the top word frequencies to compose

the proposed name. However, top words may be not relevant to depict the function

of the feature. The weighting scheme should take into account the different roles

and importance of SCEs in the implementation in order to select the most relevant

words, if they are not the most frequent ones.

8. Conclusion and Perspectives

In this paper, we propose an approach for documenting automatically a set of feature

implementations mined from a set of software variants. We exploit commonalities

and variabilities between software variants at feature implementation and use-case

levels in order to apply IR methods in an efficient way. We have implemented our

approach and evaluated its results on two case studies. The good results (high

recall) validates the main principles of our approach. Regarding future work, we

would like to improve the clustering into hybrid blocks using other techniques. We

would also like to improve the precision and relevance of our results thanks to

adaptive similarity thresholds and semantic weighting schemes. We also plan to

extract relations between the mined and documented features and automatically

build a FM in order to support a complete reverse engineering process from source

code to a SPL.

Acknowledgements

This work has been supported by project CUTTER ANR-10-BLAN-0219.

References

[1] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, ser.
The SEI series in software engineering. Addison Wesley Professional, 2002.

[2] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of product vari-
ants,” in WCRE. IEEE, 2012, pp. 145–154.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 23

[3] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman,
“Mining features from the object-oriented source code of a collection of software vari-
ants using formal concept analysis and latent semantic indexing,” in Proceedings of
The 25th International Conference on Software Engineering and Knowledge Engi-
neering, 2013, pp. 244–249.

[4] H. A. Müller, S. R. Tilley, and K. Wong, “Understanding software systems using
reverse engineering technology perspectives from the rigi project,” in Proceedings of
the 1993 Conference of the Centre for Advanced Studies on Collaborative Research:
Software Engineering - Volume 1, ser. CASCON ’93. IBM Press, 1993, pp. 217–226.

[5] S. Kebir, A.-D. Seriai, S. Chardigny, and A. Chaoui, “Quality-centric approach for
software component identification from object-oriented code,” in Proceedings of the
2012 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 181–190.

[6] A. Kuhn, “Automatic labeling of software components and their evolution using log-
likelihood ratio of word frequencies in source code,” in MSR, M. W. Godfrey and
J. Whitehead, Eds. IEEE, 2009, pp. 175–178.

[7] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying topics in source
code,” Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243, Mar. 2007.

[8] A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella, “Using IR
methods for labeling source code artifacts: Is it worthwhile?” in ICPC, D. Beyer,
A. van Deursen, and M. W. Godfrey, Eds., 2012, pp. 193–202.

[9] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension with
source code summarization,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 223–226.

[10] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao, “Auto-
matic extraction of a wordnet-like identifier network from software,” in Proceedings of
the 2010 IEEE 18th International Conference on Program Comprehension, ser. ICPC
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 4–13.

[11] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards
automatically generating summary comments for Java methods,” in Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering, ser.
ASE ’10. New York, NY, USA: ACM, 2010, pp. 43–52.

[12] M. Grechanik, K. S. McKinley, and D. E. Perry, “Recovering and using use-case-
diagram-to-source-code traceability links,” in ESEC/SIGSOFT FSE, I. Crnkovic and
A. Bertolino, Eds. ACM, 2007, pp. 95–104.

[13] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceabil-
ity links using latent semantic indexing,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 125–135.

[14] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and A. D. Lucia, “Using
code ownership to improve ir-based traceability link recovery,” in ICPC, 2013, pp.
123–132.

[15] A. Bragança and R. J. Machado, “Automating mappings between use case diagrams
and feature models for software product lines,” in SPLC. IEEE, 2007, pp. 3–12.

[16] Y. Yang, X. Peng, and W. Zhao, “Domain feature model recovery from multiple
applications using data access semantics and Formal Concept Analysis,” in Proceed-
ings of the 2009 16th Working Conference on Reverse Engineering, ser. WCRE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 215–224.

December 12, 2014 21:48

24 R. AL-msie’deen et al.

[17] P. Paškevičius, R. Damaševičius, E. karčiauskas, and R. Marcinkevičius, “Automatic
extraction of features and generation of feature models from Java programs,” Infor-
mation Technology and Control, pp. 376 – 384, 2012.

[18] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identification from the
source code of product variants,” in CSMR, T. Mens, A. Cleve, and R. Ferenc, Eds.
IEEE, 2012, pp. 417–422.

[19] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E. Salman,
“Feature location in a collection of software product variants using Formal Concept
Analysis,” in ICSR, ser. Lecture Notes in Computer Science, J. M. Favaro and
M. Morisio, Eds., vol. 7925. Springer, 2013, pp. 302–307.

[20] R. Al-Msie’deen, A.-D. Seriai, M. Huchard, C. Urtado, and S. Vauttier, “Mining
features from the object-oriented source code of software variants by combining lexical
and structural similarity,” in IRI. IEEE, 2013, pp. 586–593.

[21] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P. Heymans,
“Feature model extraction from large collections of informal product descriptions,”
in ESEC/SIGSOFT FSE, B. Meyer, L. Baresi, and M. Mezini, Eds. ACM, 2013,
pp. 290–300.

[22] B. Ganter and R. Wille, Formal concept analysis - mathematical foundations.
Springer, 1999.

[23] T. Tilley, R. Cole, P. Becker, and P. W. Eklund, “A survey of formal concept analysis
support for software engineering activities,” in Formal Concept Analysis, ser. Lecture
Notes in Computer Science, B. Ganter, G. Stumme, and R. Wille, Eds., vol. 3626.
Springer, 2005, pp. 250–271.

[24] P. Cellier, M. Ducassé, S. Ferré, and O. Ridoux, “Formal Concept Analysis enhances
fault localization in software,” in ICFCA, ser. Lecture Notes in Computer Science,
R. Medina and S. A. Obiedkov, Eds., vol. 4933. Springer, 2008, pp. 273–288.

[25] M. U. Bhatti, N. Anquetil, M. Huchard, and S. Ducasse, “A catalog of patterns
for concept lattice interpretation in software reengineering,” in SEKE. Knowledge
Systems Institute Graduate School, 2012, pp. 118–123.

[26] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev, “Relational concept discovery
in structured datasets,” Ann. Math. Artif. Intell., vol. 49, no. 1-4, pp. 39–76, 2007.

[27] S. Prediger and R. Wille, “The lattice of concept graphs of a relationally scaled
context,” in ICCS, ser. Lecture Notes in Computer Science, W. M. Tepfenhart and
W. R. Cyre, Eds., vol. 1640. Springer, 1999, pp. 401–414.

[28] S. Ferré, O. Ridoux, and B. Sigonneau, “Arbitrary relations in Formal Concept
Analysis and logical information systems,” in ICCS, ser. Lecture Notes in Computer
Science, F. Dau, M.-L. Mugnier, and G. Stumme, Eds., vol. 3596. Springer, 2005,
pp. 166–180.

[29] F. Baader and F. Distel, “A finite basis for the set of EL-implications holding in a
finite model,” in ICFCA, ser. Lecture Notes in Computer Science, R. Medina and
S. A. Obiedkov, Eds., vol. 4933. Springer, 2008, pp. 46–61.

[30] D. Grossman and O. Frieder, Information Retrieval: Algorithms and Heuristics, ser.
Kluwer international series in engineering and computer science. Springer, 2004.

[31] M. Berry and M. Browne, Understanding Search Engines: Mathematical Modeling and
Text Retrieval, ser. ITPro collection. Society for Industrial and Applied Mathematics,
1999.

[32] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better identifier splitting
techniques help feature location?” in Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ser. ICPC ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 11–20.

December 12, 2014 21:48

REVPLINE: Automatic documentation of Feature Implementations 25

[33] L. P. Tizzei, M. O. Dias, C. M. F. Rubira, A. Garcia, and J. Lee, “Components
meet aspects: Assessing design stability of a software product line,” Information &
Software Technology, vol. 53, no. 2, pp. 121–136, 2011.

[34] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software product lines:
A case study using conditional compilation,” in CSMR, T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE, 2011, pp. 191–200.

[35] R. Medina and S. A. Obiedkov, Eds., Formal Concept Analysis, 6th International
Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008, Proceedings, ser.
Lecture Notes in Computer Science, vol. 4933. Springer, 2008.

	Introduction
	State of the art
	Source code documentation in a single software
	Source code-to-documentation traceability links
	Documentation of mined features in SPL
	Synthesis

	Technical background
	Formal and Relational Concept Analysis
	Latent Semantic Indexing
	The Mobile Tourist Guide Example

	The Feature Documentation Process
	Feature Documentation Step by Step
	Identifying Hybrid Blocks of Use-cases and Feature Implementations via RCA
	Measuring the Lexical Similarity Between Use-cases and Feature Implementations via LSI
	Building the LSI Corpus
	Building the Term-document and the Term-query Matrices for each Hybrid Block
	Building the Cosine Similarity Matrix

	Identifying Feature Name via FCA

	Naming Feature Implementation Based on SCE Names
	Experimentation
	Experimental setup
	Results
	Threats to validity

	Conclusion and Perspectives

