
Feature location in a collection of software
product variants using formal concept analysis

R. AL-msie’deen1?, A.-D. Seriai1, M. Huchard1,
C. Urtado2, S. Vauttier2, and H. Eyal Salman1

1LIRMM / CNRS & Montpellier 2 University, France
Al-msiedee, Seriai, huchard, eyalsalman@lirmm.fr
2LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
Christelle.Urtado, Sylvain.Vauttier@mines-ales.fr

Abstract. Formal Concept Analysis (FCA) is a theoretical framework
which structures a set of objects described by properties. In order to
migrate software product variants which are considered similar into a
product line, it is essential to identify the common and the optional fea-
tures between the software product variants. In this paper, we present an
approach for feature location in a collection of software product variants
based on FCA. In order to validate our approach we applied it on a case
study based on ArgoUML. The results of this evaluation showed that all
of the features were identified.

Keywords: Software Product Variants, Feature Location, FCA.

1 Introduction

Software product variants often evolve from an initial product developed for and
successfully used by the first customer. These product variants usually share
some common features but they are also different from one another due to sub-
sequent customization to meet specific requirements of different customers [1].
As the number of features and the number of product variants grows, it is worth
reengineering product variants into a Software Product Line (SPL) for system-
atic reuse. To switch to Software Product Line Engineering (SPLE) starting
from a collection of existing variants, the first step is to mine a feature model
that describes the SPL. This further implies to identify the software family’s
common and variable features. Manual reverse engineering of the feature model
for the existing software variants is time-consuming, error-prone, and requires
substantial effort [2]. Thus, we propose in this paper a new approach for feature
location in a collection of software product variants. Our approach is based on
the identification of the implementation of these features among object-oriented
(OO) elements of the source code. These OO elements constitute the initial
search space. We rely on Formal Concept Analysis (FCA) to reduce this search

? This work has been funded by grant ANR 2010 BLAN 021902

2 R. AL-msie’deen et al.

space by identifying maximal subsets of features shared by maximal subsets of
product variants and organizing these subsets by inclusion.

Our approach is detailed in the remainder of this paper as follows. Section
2 presents FCA, and Section 3 outlines our approach. Section 4 discusses our
implementation and evaluation. Section 5 presents the related work. We conclude
and draw perspectives for this work in Section 6.

2 Formal Concept Analysis (FCA)

Galois lattices and concept lattices [3] are core structures of a data analysis
framework (FCA) for extracting an ordered set of concepts from a dataset, called
a formal context, composed of objects described by attributes. A formal context
is a triple K = (O,A,R) where O and A are sets (objects and attributes,
respectively) and R is a binary relation, i.e., R ⊆ O×A. An example of formal
context is provided in Figure 1 (left). A formal concept is a pair (E, I) composed
of an object set E ⊆ O and its shared attribute set I ⊆ A. E = {o ∈ O|∀a ∈
I, (o, a) ∈ R} is the extent of the concept, while I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is
the intent of the concept. Given a formal context K = (O,A,R), and two formal
concepts C1 = (E1, I1) and C2 = (E2, I2) of K, the concept specialization order
≤s is defined by C1 ≤s C2 if and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1).
C1 is called a sub-concept of C2. C2 is called a super-concept of C1. Let CK
be the set of all concepts of a formal context K. This set of concepts provided
with the specialization order (CK , ≤s) has a lattice structure, and is called the
concept lattice associated with K. In our approach, we will consider the AOC-
poset (for Attribute-Object-Concept poset), which is the sub-order of (CK , ≤s)
restricted to object-concepts and attribute-concepts. An object-concept (resp.
attribute-concept) is the lowest concept (resp. a greatest concept) where an
object (resp. an attribute) appears. In AOC-poset representations, objects are
represented only in their introducer concept (and inherited by superconcepts),
while attributes are represented only in their introducer concept (and inherited
by their subconcepts), meaning that no concept should have empty object part
and empty attribute part.

3 Our Approach to Feature Location

This section provides main concepts and hypotheses used in our approach.

3.1 Goal and Core Assumptions

The general objective of our work is to identify a feature model for a collection
of software product variants based on the static analysis of their source code.
We consider that ”a feature is a prominent or distinctive and user visible as-
pect, quality, or characteristic of a software system or systems” [4]. We adhere
to the classification given by [4] which distinguishes three categories of features:

Feature location in a collection of software product variants 3

functional, operational and presentation features. Our work focuses on the iden-
tifying of functional features. In our approach we deal with software systems
where the functional features are implemented at the programming language
level (i.e., source code). The functional features are implemented by object ori-
ented building elements (OBEs) such as packages, classes, attributes, methods or
method body elements (local variable, attribute access, method invocation). We
consider that a feature corresponds to exactly one set of OBEs. This means that
a feature always has the same implementation in all products where it is present.
We also consider that feature implementations may overlap: a given OBE can be
shared between several features’ implementations. In this paper, we name such
shared OBE as a junction.

3.2 Features versus Object-oriented Building Elements

Feature location in a collection of software variants consists in identifying a
group of OBEs that constitutes its implementation. This group of OBEs must
either be present in all variants (case of a common feature) or in some but
not all variants (case of an optional feature). Thus, the initial search space for
the feature location process is composed of all the subsets of OBEs of existing
product variants. As the number of OBEs is big, a strategy must be designed to
reduce the search space.

Our proposal consists in dividing the OBE set in specific subsets: the common
feature set – also called common block (CB) – and several optional feature sets
(Block of Variations, denoted as BVs). Optional (resp. common) features appear
in some but not all (resp. all) variants, they are implemented by OBEs that
appear in some but not in all (resp. all) variants.

This is realized by building a formal context, which is composed of software
variants (objects of the formal context) described by their OBEs (attributes of
the formal context). The relation associates a software variant with the OBEs
that appear in its source code. The corresponding AOC-poset is then calculated.
A concept intent (containing the concept attributes) represents OBEs common
to two or more variants (the objects included in the concept extent). As the
concepts of the AOC-posets are ordered, the intent of the most general (i.e., top)
concept gathers the OBEs that are common to all products. They constitute the
CB. The intents of the remaining concepts are BVs. A concept intent corresponds
to the implementation of one or more features. As an illustrative example, we
consider four text editor software variants. Editor 1 supports core text editing
features: open, close, and print a file. Editor 2 has the core text editing features
and a new select all feature. Editor 3 supports copy and paste features, together
with the core ones. Editor 4 supports select all, copy and paste features, together
with the core ones. Figure 1 shows the formal context for the text editor variants
and the AOC-poset for this formal context which shows the CB and BVs.

4 R. AL-msie’deen et al.

P
a
c
k
a
g
e
(
E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
C

lo
s
e

E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
O

p
e
n

E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
P

r
in

t
E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

P
a
c
k
a
g
e
(
E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

C
la

s
s

(
C

o
p
y
T
e
x
t

E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

C
la

s
s

(
P
a
s
t
e
T
e
x
t

E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

P
a
c
k
a
g
e
(
E
d
it

o
r
.S

e
le

c
t
A

ll
)

C
la

s
s

(
S
e
le

c
t
A

ll
S
e
t
t
in

g
s

S
e
le

c
t
A

ll
)

Editor 1 × × × ×
Editor 2 × × × × × ×
Editor 3 × × × × × × ×
Editor 4 × × × × × × × × ×

Fig. 1. The Formal Context and AOC-poset for Text Editor Variants.

4 Experimentation

To validate our approach, we ran experiments on the Java open-source software
ArgoUML [5]. We used 10 variants for ArgoUML. The advantage of ArgoUML
variants is that they are well documented and their feature model is available for
comparison with our results and validation of our proposal. ArgoUML variants
are presented in Table 1: LOC (Lines of Code), NOP (Number of Packages),
NOC (Number of Classes) and NOOBE (Number Of Object-oriented Building
Elements).

Table 1. ArgoUML software product variants

Product # Product Description LOC NOP NOC NOOBE

P1 All features disabled 82,924 55 1,243 74,444

P2 All features enabled 120,348 81 1,666 100,420

P3 Only Logging disabled 118,189 81 1,666 98,988

P4 Only Cognitive disabled 104,029 73 1,451 89,273

P5 Only Sequence diagram disabled 114,969 77 1,608 96,492

P6 Only Use case diagram disabled 117,636 78 1,625 98,468

P7 Only Deployment diagram disabled 117,201 79 1,633 98,323

P8 Only Collaboration diagram disabled 118,769 79 1,647 99,358

P9 Only State diagram disabled 116,431 81 1,631 97,760

P10 Only Activity diagram disabled 118,066 79 1,648 98,777

Table 2 summarizes the obtained results. For readability’s sake, we manually
associated feature names to CB and BVs, based on the study of the content of
each block and on our knowledge of the software. Of course, this does not impact
the quality of our results. In Table 2, CB represents a single common feature.
For the given set of BVs [2 -10], each BV represents a single optional feature.
For given set of BVs [11 - 22], each BV represents a junction between two or
more features. The column (# OBEs) in Table 2 represents the number of OBEs
that implement this feature.

Feature location in a collection of software product variants 5

Table 2. Feature Location in ArgoUML Software Variants

Feature Name # OBEs # Feature Name # OBEs

1 Class Diagram 74431 12 Junction cognitive/deployment 745

2 Diagram 1309 13 Junction cognitive/sequence 55

3 Use case Diagram 1928 14 Junction sequence/collaboration 111

4 Collaboration Diagram 935 15 Junction state/logging 6

5 Cognitive Diagram 10193 16 Junction deployment/logging 18

6 Activity Diagram 1583 17 Junction collaboration/logging 13

7 Deployment Diagram 1334 18 Junction use case/logging 22

8 Sequence Diagram 3708 19 Junction sequence/logging 51

9 State Diagram 2597 20 Junction activity/logging 3

10 Logging 1149 21 Junction cognitive/logging 169

11 Junction activity/state 57 22 Junction between features 14/17/19 18

In fact 22 features have been identified from ArgoUML software product
variants. The 12 extra features (features 11-22) represent junctions between the
other features [5]. The top concept (feature 1 called ”Class Diagram” in Table 2)
contains 74431 OBEs that are shared by all software product variants (i.e., CB).
In particular, it contains the class diagram feature, which is indeed a common
feature, and is therefore present in every product. We compared the obtained
CB with the common features of the original feature model [5]. CB corresponds
exactly to one common feature (i.e., class diagram). Concerning the obtained
BVs, each BV from 2-10 corresponds exactly to one original optional feature.
For BVs from 11-22, each block represents a junction.

5 Related work

Loesch et al. [6] applied FCA to analyze the variability in a software product line
based on product configurations (described by features), and construct a lattice
that provides a classification of the usage of variable features in real products
derived from the product line. An inclusive survey about approaches linking fea-
tures and source code in a single software is proposed in [7]. Rubin et al. [8]
present an approach to locate optional features from two product variants’ source
code. They do not consider common features and limit their proposal to two vari-
ants. Xue et al. [1] propose an automatic approach to identify the traceability
links between a given collection of features and a given collection of source code
variants. They thus consider feature descriptions as an input. Acher et al. [2]
present automated techniques to extract variability descriptions in a software
architecture and consider the architect’s knowledge for reverse engineering ar-
chitectural feature models. She et al. [9] propose an approach to define a feature
model based on a set of already identified features. The main problem tackled
is to identify the structure of the feature model. In particular, they present pro-
cedures to identify alternatives from an existing set of features. Their work is
complementary to our work as it can take as input a feature set deduced from
our approach and synthesize the feature model. Acher et al. [10] present an ap-
proach to synthesize a feature model based on the product descriptions. Their
approach takes as input product description for a collection of product variants
to build the FM. Products are described by characteristics (language, license,
etc.) with different patterns on values (many-valued, one-valued, etc.). Ryssel

6 R. AL-msie’deen et al.

et al. [11] applied FCA to extract feature diagrams from an incidence matrix
that contains matching relations as input. The matrix shows the parts of a set of
function-block oriented models that describe different controllers of a DC motor.
The approach proposed by Ziadi et al. [12] is the closest one. Authors propose a
solution for feature identification from the source code of a set of product vari-
ants. They identify all common features as a single mandatory feature. However,
they do not distinguish between optional features that appear together in a set
of variants. Their approach doesn’t consider the method body and do not use
any classification technique to classify object oriented elements.

6 Conclusion and Perspectives

We present in this paper an approach for feature location in a collection of
software product variants based on FCA. It has been applied on a collection of
ArgoUML software products. The results of this evaluation showed that all of the
features were identified. As future work, we will apply a clustering algorithm on
the CB and BVs to determine more precisely each feature implementation based
on both lexical similarity (i.e., textual similarity between OBEs) and semantic
similarity/dependency structure (i.e., inheritance, attribute access, method in-
vocation). We also plan to use the identified common and optional features to
automate the building of the studied software family’s feature model.

References

1. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: 19th RE Conference, IEEE (2012) 145–154

2. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: ECSA. (2011) 220–235

3. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Sprin-
ger-Verlag (1999)

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. (1990)

5. Couto, M., Valente, M., Figueiredo, E.: Extracting software product lines: A case
study using conditional compilation. In: 15th CSMR Conference. (2011) 191–200

6. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.
In: 11th ISPL Conference, IEEE (2007) 151–162

7. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. Journal of Software: Evolution and Process (2012) 53–95

8. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In: 27th
ASE Conference. ASE 2012, ACM (2012) 242–245

9. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE. (2011) 461–470

10. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C.: On extracting
feature models from product descriptions. In: VaMoS, ACM (2012) 45–54

11. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: 15th ISPL Conference, ACM (2011) 4:1–4:8

12. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature identification from the
source code of product variants. In: CSMR’2012. (2012) 417–422

