Formal rules for reliable component-based
architecture evolution

Abderrahman Moknit, Marianne Huchard*, Christelle Urtado®, Sylvain
Vauttiert, and Huaxi (Yulin) Zhang?

TLGI2P, Ecole Nationale Supérieure des Mines Ales, Nimes, France
*LIRMM, CNRS and Université de Montpellier 2, Montpellier, France
¥ Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France
{Abderrahman.Mokni, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr,
huchard@lirmm.fr, yulin.zhangQu-picardie.fr

Abstract. Software architectures are the blueprint of software systems
construction and evolution. During the overall software lifecycle, several
changes of its architecture may be considered (e.g. including new soft-
ware requirements, correcting bugs, enhancing software performance).
To ensure a valid and reliable evolution, software architecture changes
must be captured, verified and validated at an early stage of the soft-
ware evolution process. In this paper, we address this issue by proposing
a set of evolution rules for software architectures in a manner that pre-
serves consistency and coherence between abstraction levels. The rules
are specified in the B formal language and applied to a three-level ADL
that covers the three steps of software development: specification, imple-
mentation and deployment. To validate our rules, the approach is tested
on a running example of Home Automation Software.

Keywords: software architecture evolution, component reuse, consis-
tency checking, coherence checking, evolution rules, formal models, ab-
straction level, B formal language

1 Introduction

The great importance of evolution and maintenance in software systems engi-
neering has been noticed over more than two decades ago. According to a highly
cited survey conducted by Lientz and Swanson in the late 1970s [I], it has been
proven that software maintenance represents the main part of a software lifecycle
in terms of cost and time. In particular, this high fraction relates to component-
based software engineering that tackles the development of complex software
architectures (thanks to modularity, abstraction and reuse). Indeed, an ill mas-
tered software system maintenance or a misconception during its evolving pro-
cess may lead to serious architectural mismatches and inconsistencies. A famous
problem that software architecture evolution is subject to is erosion. Introduced
by Perry and Wolf [2] in 1992 and studied over many years [3], erosion can be
defined as the deterioration or violation of architectural design decisions by the

software implementation. It is usually due to software aging and an undisciplined
evolution of its architecture. While a lot of work was dedicated to architectural
modeling and evolution, there is still a lack of means and techniques to tackle
architectural inconsistencies, and erosion in particular. Indeed, almost existing
ADLs hardly support the whole life-cycle of a component-based software and it
often creates a gap between design and implementation, requirements and design
or even both. These gaps make evolution harder and increase the risk of non-
conformance between requirements, design and implementation hence leading to
erosion.

In previous work [45], we proposed Dedal, an ADL that supports the full life-
cycle process of component-based software systems. Dedal proposes to model
architectures at three abstraction levels that correspond to the three steps of
software development: specification, implementation and deployment. However,
at this stage the ADL handles evolution in an adhoc manner and lacks rigorous
support for reliable and automatic software evolution. In this paper, we propose
a set of evolution rules specified using the B formal language [6] to automatically
handle forward and reverse evolution among Dedal levels in a reliable way. We
also show how evolution can be simulated at an early stage using the proposed
rules, anticipating and preventing inconsistencies.

The remainder of this paper is outlined as follows: Section [2] discusses related
work. Section [3| gives a brief overview of Dedal architecture levels and their
formalization. Section [4] presents the three-level evolution approach, illustrated
by some evolution rules. Section [5| gives the simulation of an evolution scenario
example using the proposed rules. Finally, Section [6] concludes the paper and
discusses future work.

2 Related work

Over the two past decades, a wide area of related work has addressed the prob-
lem of software evolution. Indeed, many ADLs have been proposed [7]. Examples
include C2SADL [8], Wright [9], Rapide [10], ACME [11], Darwin [12] and -
ADL [13]. While "box-and-line” seems to be the easiest way to represent archi-
tectures for practitioners [I4], this notation is informal and leads to ambiguity
and imprecision. For this reason, the use of a formalism and its integration into
an ADL is crucial. To cope with software evolution and particularly dynamic
change, existing ADLs use several kinds of formal ground depending on their
application domain. For instance, C2SADL uses event-based processes to model
concurrent systems while Dynamic-Wright lies on CSP [I5], a process algebra
formalism to support the specification and analysis of interactions between com-
ponents. ACME, which was basically designed to define a common interchange
language for architecture design tools, is based on first-order logic. The ADL was
extended with Plastik [16] to support dynamic reconfiguration of architectures.
m-ADL was designed for concurrent and mobile systems. It lies on 7-calculus [17],
a higher-order logic formalism to model and evolve the behavior of the architec-
tures. C2SADL, Pi-ADL, ACME and Dynamic-Wright support dynamic recon-

figuration of architectures. However, they lack analysis support for the evolution
activity and hardly cover the whole lifecycle of component-based software.

In our work, we propose a solution for the simulation and verification of software
architecture evolution using B [6] formal models. The choice of B is motivated
by its rigorism (first-order logic) and its expressiveness that enables modeling
concepts in a reasonable easy way. The B formal models correspond to the defi-
nitions of our three-level Dedal ADL that covers the whole lifecycle of a software
system (i.e. specification, implementation and deployment). Hence, we address
both static and dynamic evolution by proposing change rules at each of the three
abstraction levels of our ADL.

3 Overview of Dedal

3.1 Dedal abstraction levels

Dedal is a novel ADL that covers the whole life-cycle of a component-based
software. It proposes a three-step approach for specifying, implementing and
deploying software architectures as a reuse-based process(cf. Figure |1)).

Component design for reuse Component-based software design by reuse

Lifecycle step Production Lifecycle step Production

Component
jevel and l—_' >
documentation .

Component code
& models

N v
A M
L M

Component code storage ____L Architecture specification L

Abstract architecture

—>

Functional & non-functional
requirements

Component repository A Component

_______ description
V] search
Architecture
=
Concrete architecture
Ry Component description
s instantiate
[Caption: N .
—-=> Uses assembly L—>
|:> Produces Instantiated assembly
description & software
))) Precedes

Fig. 1. Dedal overall process [5]

To illustrate the concepts of Dedal, we propose to model a home automation soft-
ware (HAS) that manages comfort scenarios. Here, it automatically controls the
building’s lighting and heating in function of the time and ambient temperature.

For this purpose, we propose an architecture with an orchestrator component
that interacts with the appropriate devices to implement the desired scenario.

The abstract architecture specification is the first level of software architecture
descriptions. It represents the architecture as imagined by the architect to meet
the requirements of the future software. In Dedal, the architecture specification
is composed of component roles, their connections and the expected global be-
havior. Component roles are abstract and partial component type specifications.
They are identified by the architect in order to search for and select correspond-
ing concrete components in the next step. Figure 2la shows a possible archi-
tecture specification for the HAS. In this specification, five component roles are
identified. A component playing the Orchestrator role controls four components
playing the Light, Time, Thermometer and CoolerHeater roles.

ILight ILight

G =T

ITime lintensity

o o .
Clock AndroidOrch
HomeOrch estrator

Therm estrator

-

AirConditioner
T [srcmrr G
CoolerHeater)_ AirCon

AirConditioner composition
ITherm

1AirCon e ITherm
- ngine | | Thermostat --—o
airConditionerl 14 (
lamp2

b- Architecture configuration of HAS

| doctt | & & | tamo |
s 08, [
T :T_T Component component

a- Architecture specification of HAS

Component
e 5] Class Instance

Required Delegation

i Provided
androidOrchestratorl —@ iorface = interface " link

c- Architecture assembly of HAS

Fig. 2. Architecture specification, configuration and assembly of HAS

The concrete architecture configuration is an implementation view of software
architectures. It results from the selection of existing component classes in com-
ponent repositories. Thus, an architecture configuration lists the concrete com-
ponent classes that compose a specific version of the software system. In Dedal,
component classes can be either primitive or composite. A primitive component
class encapsulates executable code. A composite component class encapsulates
an inner architecture configuration (i.e. a set of connected component classes
which may, in turn, be primitive or composite). A composite component class
exposes a set of interfaces corresponding to unconnected interfaces of its inner
components.

Figure [2}b shows a possible architecture configuration for the HAs example as
well as an example of an AirConditioner composite component and its inner
configuration. As illustrated in this example, a single component class may re-
alize several roles in the architecture specification as with the AirConditioner
component class, which realizes both Thermometer and CoolerHeater roles. Con-
versely, a component class may provide more services than those listed in the
architecture specification as with the Lamp component class which, provides an
extra service to control the intensity of light.

The instantiated architecture assembly describes software at runtime and gathers
information about its internal state. The architecture assembly results from the
instantiation of an architecture configuration. It lists the instances of the com-
ponent and connector classes that compose the deployed architecture at runtime
and their assembly constraints (such as maximum numbers of allowed instances).
Component instances document how component classes in an architecture con-
figuration are instantiated in the deployed software. Each component instance
has an initial and current state defined by a list of valued attributes. Figure [2}c
shows an instantiated architecture assembly for the HAS example.

3.2 Dedal formal model

Dedal is enhanced by a formal model using the B specification language. The
proposed model covers all Dedal concepts and includes rules for substitutability
and compatibility among each level as well as the rules that govern interrelations
between the different levels (cf. Figure [3)). These rules, which were discussed in
previous work [I8], are the basis for controlling the evolution process. Indeed,
evolution needs a subtyping mechanism to manage change locally (at the same
abstraction level) and then, inter-level rules to propagate change to the other
levels.

Light

Component Role N
” S~._ <<matches>>
<«realizes>> ' S.

—e —e
———————— >
Lamp <<implements>> LampType

Component Class v, Component Type

A ~
<<instantiates>> | ~._ «instantiates>>
1 N

lampl lamp2

—e —e

Component Instances

Fig. 3. Component interrelations in Dedal

For the sake of simplicity, we present in Table [I| a generic formal model covering
the underlying concepts of Dedal.

MACHINE Arch_concepts

INCLUDES Basic—_concepts

SETS

ARCHS;COMPS;COMP_NAMES

VARIABLES

architecture, arch_components, arch_connections, component,

comp_name, connection, comp_inter faces, client, server

arch_clients, arch_servers

INVARIANT

/* A component has a name and a set of interfaces */
component C COMPS N
comp_name € component - COMP_NAMES N
comp_interfaces € component = P(inter face) A

/* A client (resp. server)is a couple of a component and an interface */
client € component <> interface N
server € component <+ interface N

/* A connection is a relation between a client and a server */
connection € client <> server A

/* An architecture has a set of components and connections */
architecture C ARCHS A
arch_components € architecture — P(component) A
arch_connections € architecture — P(connection)

/* Arch_clients (resp. arch_servers) lists the connected clients(reps. servers)
within an architecture */
arch_clients € architecture — P (client) A
arch_servers € architecture — P (server)

Specific B notations:
<>: relation —: injection P (<set>): powerset of <set>

Table 1. Formal specification of underlying concepts

For instance, the concept of component is specialized into compRole at the spec-
ification level and the concept of architecture is specialized into configuration at
the configuration level.

This model is used to set generic evolution rules which are specialized for each
of the three abstraction levels of Dedal. An evolution scenario is presented in
Section [B as an illustration.

4 The formal evolution approach

In this section, we present our approach to handle multi-level software evolution
as a reuse-based process. The objective of this approach is twofold: (1) capture
software change and control its impact on architecture consistency and, (2) prop-
agate change between multiple architecture levels to preserve global coherence.
The approach is formal model-based since it relies on the formal models of our
three-level ADL and uses consistency and coherence properties and a set of evo-
lution rules (¢f. Figure {d). The approach is also dynamic in the sense that it
performs analysis and simulates change on executable models. The formal mod-
els may be generated through a MDE (Model Driven Engineering) process where
the source models are textual or graphical (UML profile) descriptions of Dedal.
Since the transformation is not tooled yet, this issue is out of the scope of the
present paper.

The evolution management is composed of three main activities: consistency
analysis, inter-level coherence analysis and evolution rules triggering. In the re-

Textual/graphical input output Dedal formal
architectural —>| Model transformation descriptions
descriptions

4

T H t -
Change request I_ inpu Evolution manager
1 | 1-initiate change

Evolution rules
- 3-apply cHange to o
|- trigger PR cistency Modlfl‘ed‘formal
description at
2-check architectur I—) initial level of
consistency / PR ——— change
request change Architecture 1
! JE——
— consistency e--==-= = r P
4-check coherence analyzer |
between :
architecture levels/ P Dedal formal
request change 1 -
Inter-level coherence ' i ___]| descriptions of
ERElEET €--7 the other levels
Yz of abstraction
5-apply change to
restore coherence
Modified semi- output input Modified Dedal
formal architectural Model transformation formal
descriptions descriptions

Fig. 4. The formal evolution process

mainder, we present the foundations and the mechanisms of each of these three
activities.

4.1 Architecture consistency analysis

Taylor et al. [19] define consistency as an internal property intended to ensure
that different elements of an architectural model do not contradict one another.
Usually, this property includes five sorts of consistency: name, interface, behav-
ior, interaction and refinement consistency. Some properties such as parameters,
names and interfaces are taken into account by adding constraints in the defini-
tion of our architectural formal model [I8]. In our approach, we focus on three
main properties: name consistency, connection consistency, which includes inter-
action and compatibility between components, and architecture completeness.
Name consistency. This property ensures that each component belonging to
the architecture holds a unique name and hence avoids conflicts when selecting
components.

Connection consistency. This property ensures that all architecture connec-
tions are correct and satisfy compatibility between both sides (i.e. a required
interface is always connected to a compatible provided one). In addition, con-
nection consistency stipulates that the architecture graph is consistent (i.e. each
component is connected to at least another one).

Architecture completeness. This property ensures that the architecture real-
izes all its functional objectives. From an internal point of view, completeness is
satisfied when all the required services in the architecture are met. Structurally,
it means that all the required interfaces are connected to a compatible provided
one.

When a change occurs, the analyzer checks all the aforementioned properties
and notify the evolution manager in case a violation is detected. Then, the
adequate evolution rules are triggered to reestablish architecture consistency.
The properties are defined using B, a first order set-theoretic formalism and
hence analysis is performed using a B model checker.

4.2 Inter-level coherence properties

Coherence analysis is managed using inter-level rules (cf. Figure [5]). These rules
are defined to check whether a configuration conforms to its specification or a
software instantiation is coherent with its configuration.

. Component
role

/
/ <<realizes>>

Abstract architecture
specification

A

1

<<implements>>

1
Concrete architecture
configuration

L

Component
class

<<instantiates>> [\ <<instantiates>>

\

Fig. 5. Coherence between architecture levels

Coherence between specification and configuration. A specification is a
formal description of software requirements that is used to guide the search for

suitable concrete component classes to implement the software. An architec-
ture definition is coherent when all component roles are realized by component
classes in the configuration. This results in a many-to many relation. Indeed,
several component roles may be realized by a single component class while, con-
versely, a composition of component classes may be needed to realize a single
role. Formally:

implements € con figuration <> specification N
V (Conf, Spec).(Conf € configuration A Spec € specification
=
(Conf, Spec) € implements
<~
¥V CR.(CR € compRole N CR € spec_components(Spec) =
3 CL.(CL € compClass N CL € config_components(Conf) A
(CL,CR) € realizes)))

Coherence between configuration and assembly. Coherence between con-
figuration and assembly levels is satisfied when all the classes of the configuration
are instantiated at least once in the architecture assembly and, conversely, all
instances of the assembly are instances of the component classes of the configu-
ration. Formally:

instantiates € assembly — con figuration A
V(Asm,Conf).(Asm € assembly N Conf € configuration
=
((Asm, Conf) € instantiates

4
VCL.(CL € compClass AN CL € config_components(Conf)

=

3CI.(CI € compInstance A CI € assm_components(Asm) A
(CI,CL) € comp_instantiates)) A
VvV CI.(CI € compInstance A CI € assm_components(Asm)

=

JCL.(CL € compClass N CL € config_components(Conf) A
(CI,CL) € comp_instantiates))))

Coherence analysis comes after consistency checking returns a positive result.
Indeed, it is necessary that software system descriptions are consistent at all ab-
straction levels before checking coherence between them. When a change occurs
at any level, this may result in erosion or drift (for instance, some higher level
decisions are violated or not taken into account by the lower level). The evo-
lution manager is then notified about the detected incoherence and propagates
the change to the incoherent levels using the adequate evolution rules.

4.3 Specifying evolution rules

An evolution rule is an operation that changes a target software architecture
by the deleting, adding or substituting of one of its constituent elements (com-
ponents and connections). These rules are specified using the B notation and
each rule is composed of three parts: the operation signature, preconditions and
actions.

Architecture specification evolution. Evolving an architecture specification
is usually a response to a new software requirement. For instance, the architect
may need to add new functionalities to the system and hence add some new

roles to the specification. Moreover, a specification may also be modified during
the change propagation process to preserve coherence and keep an up-to-date
specification description of the system that may be implemented in several ways.
The proposed evolution rules related to the specification level are the addition,
deletion and substitution of a component role and the addition and deletion of
connections. The following role addition rule is an example of evolution rules at
specification level:

addRole(spec, newRole) =

PRE

spec € arch_spec A newRole € compRole A newRole ¢ spec_components(spec) A

/* spec does not contain a role with the same name*/

V cr.(cr € compRole A cr € spec_components(spec)
= comp_name(cr) = comp_name(newRole))

THEN
spec_servers(spec) := spec_servers(spec) U servers(newRole) ||
spec_clients(spec) := spec_clients(spec) U clients(newRole) ||
spec_components(spec) := spec_components(spec) U {newRole}
END;

)

Architecture configuration evolution. Change can be initiated at configu-
ration level whenever new versions of software component classes are released.
Otherwise, an implementation may also be impacted by change propagation ei-
ther from the specification level, in response to new requirements, or from the
assembly level, in response to a dynamic change of the system. Indeed, a config-
uration may be instantiated several times and deployed in multiple contexts. At
configuration level, there is a need for two more evolution rules: the connection
and the disconnection of the exposed services. Indeed, a component class used in
a configuration may hold more provided interfaces than the component role that
it implements. These extra interfaces may be left unconnected. On the contrary,
a specification sets by definition the requirements, and hence the provided inter-
faces of all roles must be connected to keep the architecture consistent. As an
example of evolution rule at configuration level, we list the following component
class substitution rule:

replaceClass(config, oldClass, newClass) =
PRE
oldClass € compClass AN newClass € compClass N config € configuration N
oldClass € config—components(config) N
/* The old component class can be substituted for the new one
(verified by the component substitution rule)*/
newClass ¢ config_components(config) A (oldClass, newClass) € class_substitution
THEN
config_components(config) := (config—components(config) - {oldClass}) U {newClass} ||
config_clients(config) := (config—clients(config) - clients(oldClass)) U clients(newClass)
END

Architecture assembly evolution. Since the architecture assembly represents
the software at runtime, evolving software at assembly level is a dynamic evolu-
tion issue. Several kinds of change may occur at runtime. For instance, dynamic
software change may be needed due to a change in the execution context (e.g.
lack of memory, CPU). Unanticipated changes are one of the most important is-
sues in software evolution. Indeed, some software systems have to be self-adaptive
to keep providing their functions despite environmental changes. This issues are

10

handled by the evolution manager which monitors the execution state of the
software through its corresponding formal model. It then triggers the assembly
evolution rules to restore consistency when it is violated. These rules include
component instance deployment, component instance removal, component in-
stance substitution, component instance connection / disconnection and service
connection / disconnection. As an example of dynamic evolution rule, we state
the following component instance addition rule:

deployInstance(asm, inst, class, state) =
PRE
asm € assembly N class € compClass N
/* The instance is a valid instantiation of an existing component class*/
inst € complnstance A class = comp_instantiates(inst) A inst ¢ assm_components(asm) A
/* The state given to the instance is a valid value assignment to the attributes
of the instantiated component class*/
state € P (attribute_value) N card(state) = card(class—_attributes(class)) A
/* The maximum number of allowed instances of the given component class
is not already reached*/
nb_instances(class) < maz_instances(class)

THEN
/*initial and current state initialization*/
initiation_state(inst) := state ||
current_state(inst) := state ||
/*updating the number of instances and the assembly architecture*/
nb_instances(class) := nb_instances(class) + 1 ||
assm_components(asm) := assm_components(asm) U {inst} ||
assm_servers(asm) := assm_servers(asm) U servers(inst) ||
assm_clients(asm) := assm_clients(asm) U clients(inst)
END;

5 Implementing an evolution scenario

To illustrate the use of evolution rules, we propose to evolve the HAS architecture
by adding of a new device that manages the building’s shutters. The evolution
simulation is performed using ProB [20], an animator and model checker of B
models. Once the formal models corresponding to the three architecture descrip-
tions are successfully checked, we use the ProB solver to trigger change as a goal
to reach. In the remainder, we give some details about the example instances
and the different steps of the evolution process.

5.1 Intra-level change

Figure [0] illustrates the old architecture specification and the evolved one.

Initially, the instantiation of the formal HAS specification is as follows:

11

ILight

ILight Light d }—
Light @)}+—

Time -0)—
Time P)_ ITime

ITime HomeOrc HomeOrc
hestrator II:> Thermometer @)— hestrator
ITherm
Thermometer @)— Role addition to
ITherm HAS specification
CoolerHeater @)—
ICon
CoolerHeater @)—
ICon Shutter a)—
IShutter
Older version of HAS specification Evolved version of HAS specification

Fig. 6. Evolving the HAS specification by role addition

compRole := {crl, crla, cr2, cr3, crd, crda, crb, cr6}||
comp_name := {crl — Light, crla — ELight, cr2 — Time,
cr3 — Thermometer, crd — HomeOrchestrator,
crda — HomeOrchestrator, crb — Cooler Heater,
cr6 — Shutter}||
arch_spec := {HAS_spec}||
spec_components := {HAS_spec — {crl,cr2,cr3,crd,crb}}||
spec_connections := { HAS_spec — {
((erd, rintILight) — (crl, pintILight)),
((erd, rintITime) — (cr2, pintITime)),
((erd, rintITherm?2) — (cr3, pintITherm1)),
((erd, rintICon) — (crb, pintICon))}}H|
spec_clients := {(HAS_spec — {(cr4, rintI Light), (cr4, rintITime),
(erd, rintITherm?2), (crd, rintICon))}}||
spec_servers := {(HAS_spec — {(crl, pintILight), (cr2, pintITime),
(er3, pintITherml), (crb, pintICon)})}

The change is requested by the execution of the the role addition operation that
takes as arguments the HAS_spec HAS architecture specification and the Shutter
(cr6) component role.

|addRole(H AS_spec, cr6)

The change process is initiated by setting a goal. When the goal cannot be
reached, the change process rolls back to the initial state of the architecture. In
this case, the goal is to add a Shutter to the HAS specification while maintaining
architecture consistency (as defined in Section [4)):

GOAL == changeOperation = ADDITION A selectedRole = cr6 A
selectedSpec = HAS_spec A specification_consistency

The change entails the disconnection of all servers, the deletion of the old or-
chestrator (cr4), the addition of the new orchestrator (cr4a) and finally the

12

connection of all servers. These operations are automatically generated by the
ProB solver:

disconnect(HAS_spec, (crd, rintI Light), (crl, pintI Light))
disconnect(HAS_spec, (crd, rintITime), (cr2, pintITime))
disconnect(H AS_spec, (crd, rintITherml), (cr3, pintITherm))
disconnect(HAS_spec, (cr4, rintICon), (crb, pintICon))
deleteRole(H AS_spec, crd)

generate AddRole(H AS_spec, crda)

connect(HAS_spec, (crd, rintI Light), (crl, pintI Light))
connect(HAS _spec, (crd, rintITime), (cr2, pintITime))
connect(HAS_spec, (crd, rintITherml), (cr3, pintITherm))
connect(HAS_spec, (crd, rintICon), (cr5, pintICon))
connect(HAS_spec, (crda, rintl Shutter), (cr6, pintl Shutter))

5.2 Propagating change to other levels

Once the change is successfully achieved at the specification level, the propaga-
tion rules are triggered in the other levels to attempt to restore coherence with
the new specification architecture.

Propagating change to the HAS configuration. To restore conformity with
the new HAS specification, the new configuration must realize the added Shutter
role and its connection to the orchestrator device to perform the new required
behavior. In the given example, the solution is to search for a concrete compo-
nent class that realizes the Shutter role and can be connected to a compatible
orchestrator class. Initially, the HAS configuration (illustrated by Figure @ is
formally instantiated as follows:

IPower

=T
)): lintensity

lintensity IClock

IClock Clock —.)_

Clock —.)— AndroidOreh II:> AndroidOrch
estrator ITherm estrator
ITherm Change AirConditi —@
propagation irConditioner
) — o) — To HAS ._)
AirConditioner configuration 1AirCon
I1AirCon
AndroidShutter —.)—
IShutter
Older version of HAS configuration Evolved version of HAS configuration

Fig. 7. Change propagation to HAS configuration

13

compClass := {cl1, cl2, cl3, cl4, cl3a, cl3b, cl4a, cl6 }||
comp_name := {cll — Lamp, cl2 — Clock, cl3 — AirConditioner,
cl3a — CHEngine, cl3b — Thermostat,
cld — AndroidOrchestrator, clda — AndroidOrchestrator,
cl6 — AndroidShutter}||
configuration := {HAS_config, AirConCon fig}||
compositeComp := {cl3}
composite_uses := {cl3 — AirConConfig}
config_components := {HAS_config — {cll,cl2, cl3, cl4},
AirConConfig — {cl3a, cl3b}||
spec_connections := {HAS_con fig — {
((cl4, rintI Power) +— (cll, pintI Power)),
((cl4, rintIIntensity) — (cll, pintIIntensity)),
((cl4, rintIClock) — (cl2, pintIClock)),
((cl4, rintITherm?2) — (cl3, pintITherm?2)),
((cl4, rintICon) — (cl3, pintICon))},
AirConConfig — {((cl3a, rintITherml) — (cl3b, pintITherml)),
((cl4, rintITime) — (cl2, pintI Lamp))}||
config_clients := {(HAS_config — {(cl4, rintI Lamp), (cl4, rintIIntensity),
(cl4, rintIClock), (cl4, rintITherm?2), (cl4, rintICon))} }H|
config_servers := {(HAS_config — {(cl1, pintI Lamp), (cl1, pintIIntensity),
(cl2, pintITime), (cl3, pintITherm?2), (cl3, pintICon)})}

Again, we use the ProB solver giving it the following goal to restore coherence
property with the new HAS specification:

‘GOAL == selectedConfig = HAS_config N configuration_consistency N specConfigCoherence

We note that specConfigCoherence is the conformity rule defined in Section [to
check conformity between a specification and a configuration.

A potential solution generated by the solver is:

disconnect(HAS_config, (cl4, rintI Lamp), (cl1, pintI Lamp))
disconnect(HAS_con fig, (cl4, rintl Intensity), (cll, pintlItensity))
disconnect(HAS_config, (cl4, rintIClock), (cll, pintIClock))
disconnect(HAS_config, (cl4, rintITherm?2), (cl3, pintITherm?2))
disconnect(HAS_config, (cl4, rintICon), (cl3, pintICon2))
deleteClass(HAS_config, cl4)

addClass(HAS_config, cl4a)

connect(HAS_config, (clda, rint] Lamp?2), (cll, pintI Lamp))
connect(HAS _config, (clda, rintI Intensity2), (cll, pintlItensity))
connect(HAS_config, (clda, rintIClock), (cl1, pintIClock))
connect(HAS_config, (clda, rintITherm3), (cl3, pintITherm?2))
connect(HAS_config, (clda, rintICon2), (cl3, pintICon2))
connect(HAS_config, (clda, rintI Shutter), (cl6, pintI Shutter))

Propagating change to the HAS assembly. In the same way, change is
propagated to assembly level by disconnecting and deleting the instance of the
old AndroidOrchestrator and by creating, deploying and connecting an instance
of the new added Shutter device.

The solver is given the following goal:

GOAL == selectedAssembly = HAS_assembly N\ assembly_consistency N
assemblyCon figCoherence

The assemblyConfigCoherence is the defined property to check coherence be-
tween an assembly and a configuration (cf. Section .
The solution generated by the solver is as follows:

14

unbind(HAS_assembly, (ci4, rintI LamplInst), (cil, pintI LampInstl))
unbind(HAS_assembly, (ci4, rintI IntensityInst), (cll, pintlItensitylInst))
unbind(H AS_assembly, (ci4, rint] LamplInst), (ci2, pint] LampInst2))
unbind(H AS_assembly, (cid, rintl IntensityInst), (ci2, pintlItensityInst2))
unbind(HAS_assembly, (ci4, rintIClockInst), (cil, pintIClockInst))
unbind(HAS_assembly, (ci4, rintITherm2Inst), (ci3, pintITherm2Inst))
unbind(HAS_assembly, (ci4, rintI Conlnst), (¢i3, pintICon2Inst))
removelnstance(HAS_assembly, ci4)

deployInstance(HAS_assembly, cida, clda, {})

bind(HAS_assembly, (cida, rint] Lamp2Inst), (cil, pintI LampInstl))
bind(HAS_assembly, (cida, rintI Intensity2Inst), (cil, pintIItensityInstl))
bind(H AS_assembly, (cida, rintIClockInst), (cil, pintIClockInst))
bind(HAS_assembly, (cida, rint] Lamp2Inst), (ci2, pint] LampInst2))
bind(HAS_assembly, (cida, rintITherm3Inst), (ci3, pintITherm2Inst))
bind(HAS—_assembly, (cida, rintICon2Inst), (ci3, pintICon2Inst))
bind(HAS_assembly, (cida, rintI Intensity2Inst), (cil, pintIItensityInst2))
bind(H AS_assembly, (cida, rintl ShutterInst), (ci6, pintI ShutterInst))

At this stage, change is simulated and verified semi-automatically since the mod-
els are instantiated manually. Moreover, a manual checking is needed to validate
the proposed evolution rules. A perspective is to fully automate the evolution
management process and to study the scalability of the solver to timely handle
complex goals.

6 Conclusion and future work

In this paper, we proposed a set of rules to evolve software architectures. These
rules defined as a B formal model of our three-level Dedal ADL that covers the
whole lifecycle of software systems. Our approach enables simulation and early
validation of software evolution at design time (specification and implementa-
tion) as well as runtime (deployment). At this stage, the proposed consistency
properties and evolution rules are checked and validated using a B animator and
model checker. As a future work, we aim to extend the use of the proposed evo-
lution rules in order to consider the semantics of changes. Another perspective is
to generate multiple candidate evolution paths that can be evaluated using some
criteria (e.g. quality of service, cost, change priority) as proposed by Barnes et
al. [21].

We are also considering several MDE techniques to develop an eclipse-based
environment for Dedal that automatically manages software architecture evolu-
tion.

References

1. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of application soft-
ware maintenance. Communication of the ACM 21(6) (June 1978) 466-471

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Software Engineering Notes 17(4) (October 1992) 4052

3. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A
survey. Journal of Systems and Software 85(1) (January 2012) 132-151

4. Zhang, H.Y., Urtado, C., Vauttier, S.: Architecture-centric component-based de-
velopment needs a three-level ADL. In: Proceedings of the 4th ECSA. Volume
6285 of LNCS., Copenhagen, Denmark, Springer (August 2010) 295-310

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Zhang, H.Y., Zhang, L., Urtado, C., Vauttier, S., Huchard, M.: A three-level
component model in component-based software development. In: Proceedings of
the 11th GPCE, Dresden, Germany, ACM (September 2012) 70-79

Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, USA (1996)

Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE TSE 26(1) (January 2000) 70-93
Medvidovic, N.: ADLs and dynamic architecture changes. In: Joint Proceedings
of the Second International Software Architecture Workshop and International
Workshop on Multiple Perspectives in Software Development on SIGSOFT ’96
Workshops, New York, USA, ACM (1996) 24-27

Allen, R., Garlan, D.: A formal basis for architectural connection. ACM TOSEM
6(3) (July 1997) 213249

Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and analysis of system architecture using rapide. IEEE TSE 21
(1995) 336-355

Garlan, D., Monroe, R., Wile, D.: ACME: An architecture description interchange
language. In: Proceedings of CASCON, IBM Press (1997)

Magee, J., Kramer, J.: Dynamic structure in software architectures. ACM SIG-
SOFT Software Engineering Notes 21(6) (1996) 3-14

Oquendo, F.: {Pi-ADL}: An architecture description language based on the higher-
order typed pi-calculus for specifying dynamic and mobile software architectures.
SIGSOFT Software Engineering Notes 29(3) (May 2004) 1-14

Shaw, M., Garlan, D.: Formulations and formalisms in software architecture. In
Leeuwen, J., ed.: Computer Science Today. Volume 1000 of LNCS. Springer (1995)
307-323

Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8) (August 1978) 666-677

Joolia, A., Batista, T., Coulson, G., Gomes, A.T.A.: Mapping ADL specifications
to an efficient and reconfigurable runtime component platform. In: Proceedings of
the 5th WICSA, Washington, USA, IEEE (2005) 131-140

Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information
and Computation 100(1) (September 1992) 1-40

Mokni, A., Huchard, M., Urtado, C., Vauttier, S., Zhang, H.Y.: Towards au-
tomating the coherence verification of multi-level architecture descriptions. In:
Proceedings of the 9th ICSEA, Nice, France (October 2014)

Taylor, R., Medvidovic, N., Dashofy, E.: Software architecture: Foundations, The-
ory, and Practice. Wiley (2009)

Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the b method.
International Journal on Software Tools for Technology Transfer 10(2) (February
2008) 185-203

Barnes, J., Garlan, D.,; Schmerl, B.: Evolution styles: foundations and models
for software architecture evolution. Software and Systems Modeling 13(2) (2014)
649-678

16

	Formal rules for reliable component-based architecture evolution

