
Home Automation Systems

SAASHA: a Self-Adaptable Agent System for Home Automation

Fady HAMOUI*, Marianne HUCHARD+, Christelle URTADO* and Sylvain VAUTTIER*

*LGI2P, Ecole des Mines d’Alès, Nîmes, France
{Fady.Hamoui, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

+ LIRMM, UMR 5506, CNRS and UM2, Montpellier, France
huchard@lirmm.fr

Smart homes are equipped with networked domestic electronic devices that each
provide several services and are remotely controlled by a home automation
system.

State-of-the-art home automation systems often are capable of playing simple
and mostly predefined scenarios that sequentially execute various devices’
services and are useful in recurrent situations.

They generally fail to:

Expected qualities of the proposed system thus are:

Sample scenario. Close all shutters, turn lights on in the living-room and turn
radiators on as soon as night falls if house temperature is too low.

Architecture of SAASHA

Requirements for SAASHA

SAASHA is agent-based.

 provide inexperienced users with the ability to define their own rich
scenarios and have them automatically and dynamically implemented so
they can instantly be played,

 perceive their environment, and changes in their environment, and adapt
to them.

 configurability,

 context-awareness,
 autonomic reconfigurability,
 dynamic adaptability.

 Graphical User Interface Agents mediate the interaction with users.
Administrators can parameterize the system. End-users can define custom
scenarios.

 Device Control Agents control devices’ service execution, and implement
scenarios.

SAASHA provides means to avoid scenario conflicts.

SAASHA reconfigures itself (finds alternate possibilities, re-generates components
and re-deploys them) so as to try and maintain service continuity when agents or
devices fail or become unavailable.

Snapshot of the Domus smart home simulator.
Domus is a JavaFX GUI that provides a realistic view of a house and of installed UPnP
virtual devices (here, the lamp, air con, washing machine and shutters) and enables to
act on devices through their views.

Implementation of SAASHA 

SAASHA’s implementation combines the use of UPnP as a middleware for device
and service discovery and control and of OSGi as a framework for component
dynamic deployment. SAASHA agents are themselves coded as UPnP devices.

The Domus simulator demonstrates the effects of SAASHA scenario execution on
virtual devices when real-world devices are not available.

SAASHA agents are made from software components. 

Conclusion

SAASHA automatically and dynamically adapts itself to its surrounding physical
environment without previous knowledge.

SAASHA detects, identifies and controls available devices. It provides
inexperienced users with an adapted scenario definition GUI. It implements,
deploys and executes user-defined scenarios.

Administrators can optionally parameterize the running mode of SAASHA.

These capabilities are enabled by the automatic generation and dynamic
deployment of device control and coordination software components.

Rich scenarios are defined as ECA rules.  As soon as some Event occurs, if
Conditions all are satisfied, the associated sequence of Actions is executed.

Scenario definition GUI.
Users select events, conditions and actions that are automatically extracted and
classified from device and service descriptors in a dynamically updated GUI window.

They are automatically deployed into their destination agents’ architecture
and control the devices their destination agents are responsible of.

 Coordination components are dynamically generated from scenario
descriptions. They are automatically deployed depending on both control
responsibility repartition and administrator-parameterized deployment
strategy. Alone (in case of centralized scenario deployment) or in groups (in
case of distributed scenario deployment), coordination components
implement scenarios. They are responsible of event occurrence monitoring,
condition checking and action triggering.

 Meta-level components are the common part of all agents’ inner
architecture. They implement agents’ common behaviors.

 Control components are dynamically generated from device and service
descriptors to wrap device drivers.

Generation

<<component>>
Coordinator
Component

<<component>>
Clock Component <<component>>

Light Component

HourSensorItf

HourActuatorItf
LightEvent

LightSensorItf
HourEvent

<<component>>
Shutter Component

<<component>>
Radiator

Component

RadiatorSensorItf
RadiatorEvent

TemperatureEvent ShutterSensorItf

ShutterEvent

LightActuatorItf

ShutterActuatorItf

RadiatorActuatorItf

TemperatureSensorItf

<<component>>
Component
Generator

<<component>>
Agent Registry

<<component>>
Device Registry

<<component>>
Detector

<<component>>
Core Component

<<component>>
Component

Registry
<<component>>

Scenario Registry

Registration Registration

Registration

Notification

Information Information
Information

Information

Registration

A Device Control Agent’s inner architecture.
Meta-level components (grey) are the agent’s predefined part. Turquoise blue
components are device control components. They are added into the agent’s
architecture to support a specific scenario that involves a shutter, a light, a radiator
and a clock. The coordinator component (deep blue) is deployed to coordinate the
behavior of all components involved in the scenario. This example scenario
implementation is centralized.


