SAASHA : a Self-Adaptable Agent System for Home Automation

Fady Hamoui, Christelle Urtado, Sylvain Vauttier

LGI2P / Ecole des Mines d’ Ales
Nimes, France
<First~.<Last> @mines-ales.fr

Abstract

This paper proposes SAASHA, a Self-Adaptable Agent
System for Home Automation that provides end-users with
the capacity of defining custom scenarios to act on their
environment. The proposed system adapts dynamically to
the environment without any expert intervention. It is com-
posed of two types of component-based software agents:
Graphical User Interface Agents that constitute the system’s
front-end and Device Control Agents that control the de-
vices from the environment and implement user-defined sce-
narios. SAASHA seamlessly avoids scenario conflicts and
automatically recovers from device failures.

1 Introduction

Home environments are composed of networks of do-
mestic electronic devices controlled by home automation
systems. Each device provides services described by a set
of operations and emits events that reflect the change of
its state. Home automation systems implement scenarios
that coordinate the actions of various devices in their en-
vironment. Let us, for example, consider an environment
that contains a shutter, a radiator, a light and a clock. The
scenario “agreeable temperature in the evening” is defined
by “after 7:00 PM, if the living room temperature is be-
low 17°C, the shutter should be closed, the light turned on
and the radiator turned on at power 6”. There is a strong
need for home automation systems that adapt to various en-
vironments and to environment changes [9]. To do so, we
advocate that home automation systems must possess the
following qualities [2, 3]:

e Configurability. The system must be configurable to fit
the needs of both its administrators (that might need to pa-
rameterize the system’s architecture) and its end-users (that
must be able to directly control devices, execute predefined
scenarios and define new custom scenarios) [4].

e Context-awareness. The system must be aware of both
its internal state (failure of its constituents) and changes in

Marianne Huchard

LIRMM, UMR 5506, CNRS and UM2
Montpellier, France
Huchard @lirmm.fr

its environment (device addition or removal).

e Autonomic reconfiguration. The system must be able
to reconfigure itself automatically to adapt to system-related
or environment-related changes. It must also be capable of
seamlessly managing conflicts in service executions with-
out human intervention [5].

e Dynamic adaptation. The system must be capable to
dynamically perform configuration and reconfiguration op-
erations without disrupting its running [5].

In this paper, we present SAASHA, a Self-Adaptable
Agent System for Home Automation. The article is struc-
tured as follows. In section 2, we present the general ar-
chitecture of SAASHA. Sections 3 and 4 describe agents’
inner architecture and the processes for defining and real-
izing scenarios. In section 5, we present the technologies
used to implement our system. In section 6, we compare
our system with existing proposals. Finally section 7 con-
cludes and draws several research perspectives.

2 The SAASHA home automation system

The architecture of the SAASHA system consists of a set
of component-based agents. Agents are active distributed
entities which perceive information from their environment
and react to events by running behaviors. They collab-
orate to realize complex scenarios. A software compo-
nent [14] is a decoupled reusable programming unit, which
can be assembled to other components through interfaces.
These component assemblies can be dynamically modified
by adding, removing or replacing components or by chang-
ing the connections between them. We define the internal
structure of our agents using such an architecture based on
components in order to benefit from the capability to dy-
namically adapt their behavior. SAASHA agents are of two
kinds: Graphical User Interface Agents (GUIAs) and De-
vice Control Agents (DCAs). GUIAs are responsible for
the system’s interactions with end users and system admin-
istrators. They provide GUIs to define scenarios and to con-
figure DCAs. DCAs perform device detection and control,
in order to execute scenarios. Administrators launch GUIAs



<<component>> @

<<component>> T | <<component>> I |
Operation-Event Registry End User Interface ¢ ScenarioDescriptorGenerator
(LRegistration Update Generation
o
( SRS @ Registration

Scenario Registry
Notification Registration

<<component>> £ | <<component>> & |

Agent Registry

<<componhent>> @

Core Component Agent Detector

Figure 1. Internal architecture of a GUIA.

that connect to their networked environment. When GUIAs
detect DCAs, they register them in their local registries and
update their DCA configuration GUI. Administrators can
launch a DCA from the GUI. Once launched, DCAs de-
tect available agents and devices and register them in their
local registries. The optional configuration of a DCA con-
sists in specifying its control scope (device and service type,
location). If a DCA is not parameterized explicitly, it con-
trols all the detected devices (default setting). Once setup
is complete, DCAs generate device control components ac-
cordingly. For each device, a DCA generates and dynami-
cally deploys a control component based on the descriptors
provided by the device. Control components supply three
types of interfaces; sensor interfaces hold operations that
retrieve values measured by a device in the environment,
actuator interfaces hold operations that perform actions on
adevice, event interfaces provide events emitted by a device
and register component subscriptions to these events. Once
control components are generated, DCAs send information
messages that GUIAs use to present a list of the available
services. Users can define scenarios through a dedicated
end-user GUI. The GUIA registers the defined scenario and
generates a scenario descriptor. This descriptor is sent to
all the DCAs involved in scenario realization and to all the
GUIAs for logging purposes. Depending on their role (fur-
ther details in Sect. 4), DCAs can then generate and de-
ploy coordination components that dynamically adapt the
agents’ internal architectures to implement scenarios.

3 Graphical user interface agents and sce-
nario definition

Figure 1 shows the internal architecture of GUIAs. The
Core Component is responsible of both the communica-
tion between agents and of the implementation of GUIA’s
behavior. Agents are automatically detected by the Agent
Detector component. User-oriented services provided by
DCAs are registered in a local service registry managed by
the Operation-Event Registry component. When a user de-
fines a scenario, the Scenario Descriptor Generator com-
ponent generates a descriptor. The scenario definition GUI
and the scenario definition process are detailed in [6]. Each
scenario is defined as an ECA (Event/Condition/ Action)

rule [8] which combines in its event, condition and ac-
tion clauses event, sensor and actuator services provided by
DCAs. To help users select the services, SAASHA provides
two mechanisms:
- Context restriction. Users can choose to browse services
from the whole house or restrict to a given room.
- Device selection modes. Services might be provided by
several devices of the same type, SAASHA provides three
device selection modes:

e all devices of a chosen type in the specified context.

e any device of a chosen type from the specified context.

e a specific device from the specified context.

4 Device control agents and scenario imple-
mentation

The core architecture of a DCA as is presented in the up-
per part of Figure 2. The Core Component is responsible
of the communication between agents. Available devices
are detected by the Device Detector component. Control
and coordination components are generated by the Compo-
nent Generator component. Scenarios can be implemented
in two ways, either centralized (see Sect. 4.1) or distributed
(see Sect. 4.2). When implementing and deploying a sce-
nario, the centralized approach is preferred to the distributed
one when possible as it requires no message passing be-
tween DCAs. This choice is made by GUIAs.

4.1 Centralized scenarios implementation

The DCA in charge of a scenario generates and deploys
a corresponding coordination component. This coordina-
tion component is dynamically bound to the control com-
ponents prescribed by the scenario. Once assembled prop-

<<component>> @ <<component>> @

Detector Core Component

Notification @,

¢ Registration ’Q\Registration

<<component>> @ <<component>> @

<<component>> @

Device Registry

& Information J, Information
T | [ Information
7%

Agent Registry Component Registry

\é[),lnformation%Registration

S mr—
<<component>> @ Sencration <<component>> il Registration
Component Generator —o Scenario Registry
HourSensorltf HourEvent LightActuatorltf LightSensorltf:
T ? HourActuator|tf ﬁ@? LightEvento

<<component>> @ <<component>> @ <<component>> @

Hour Component
RadiatorEvent
TemperatureEvent
T ?RadiatorSensorltf

Coordinator Component Light Component

ShutterActuatorltf ShutterEvent:
@E ShutterSensorltfo T

RadiatorActuatorltf

<<component>> @ <<component>> @

TemperatureSensorltf

Radiator Component Shutter Component

Figure 2. Internal architecture of a DCA.



erly, the coordination component waits for event notifica-
tion. When an adequate event is received, it checks whether
the condition is satisfied. If so, it triggers the execution of
actions. The DCA architecture that implements our exam-
ple scenario in a centralized way is shown in the lower part
of Figure 2.

4.2 Distributed scenarios implementation

Figure 3 shows how distributed DCAs can cooperate to
implement a scenario. DCAe is only responsible for both
capturing the event and coordinating scenario execution.
DCAc is responsible for verifying the condition. When
the event is raised, DCAe sends a message (1) to DCAc
to make it check the condition. When the condition is satis-
fied, DCAc sends a message (2) to DCAe to notify that the
condition is satisfied. Then, DCAe sends request messages
(3) to all the DCAs in charge of actions (DCAc, DCAal
and DCAa2). In the general case, the condition clause of a
scenario can be expressed as a conjunction of several condi-
tions. This is why DCAe (that controls the event) has been
chosen as a central coordination point.

4.3 Scenario conflict avoidance

An action conflict is a situation where a scenario ex-
ecutes an action on a device very soon after an opposite
action has been executed on the same device. To prevent
conflicts, SAASHA blocks opposite actions during a config-
urable remanence period. There nonetheless are two excep-
tions, for which the opposite action is not blocked; if an op-
posite action is executed by a user, or if an opposite action
is to be executed by a predominant scenario. Predominant
scenarios manage emergency situations and must always be
executed.

<<component>> & | <<component>> & | <<component>> & |

Hour Component —0— Coordinator Compenent Shutter Component

(L HourEvent gShutterActuatorltf Iy (L
HourSensorltf . ShutterSensorltf
HourActuatorltf ‘PMessaging ShutterEvent

<<component>> @ <<component>> @

Core Component

DCAal
Evert Mesaageb‘ 3% | Action Execution Message

; DCAa2

; =

<<component>> @ :

Core Component

DCAe
Natification Measageﬁ 2

DCAc

<<component>> @

Core Component
Messaging A)

Core Component

RadiatorEvent ‘ LightEvent
RadiatorSensorltf L LightSensorltf
RadiatorActuatorltf QLightActuatorltf ¢

<<component>> @*3* <<component>> g | <<component>> & |

Radiator Component |-0— Coordinator Component
TemperatureSensorltf

Temperature Event

Light Component

Figure 3. Example scenario implementation.

4.4 Device failure recovery

SAASHA reconfigures itself transparently according to
device selection modes when a device fails or disappear. In
all devices mode, there is no need for reconfiguration. The
operation is not executed by the faulty device which makes
nearly no difference. In any device mode, the system can
automatically replace the faulty device by an other device
from the same context. If no alternative device is found or
if the scenario is to be by a specific device only, the system
suspends scenario execution.

5 Prototype implementation & experiments

A prototype of SAASHA has been implemented using
0SGi' and UPnP? technologies. The complete meta-model
is presented in [6]. Agents are implemented as UPnP de-
vices. This provides them with a communication service
to receive messages from other agents. An agent life cy-
cle control service that enables system administrators to
activate, stop or dismiss agents. DCAs provide an extra
setting service that enables system administrators to con-
figure them via GUIAs. UPnP makes multi-agent system
management easier by providing a mechanism for the au-
tomatic configuration of agents’ communication resources
and for the automatic detection of other agents. Compo-
nents in agents’ internal architectures are implemented as
OSGi bundles managed thanks to an OSGi platform. The
Device Detector component is implemented as a UPnP con-
trol point which detects all the available devices. A control
component is a control point that handles a single UPnP
device, invokes service operations and can subscribe to
events emitted by the device’s services. A prototype of the
SAASHA multi-agent system has been deployed and tested
on a set of OSGi Felix? containers. It includes a GUIA and
a set of DCAs controlling virtual devices (reused from the
Cybergarage* project). Various scenario deployment tests
have been successfully conducted.

6 Discussion

Home automation systems can be classified into three
categories, regarding their architectures. Centralized sys-
tems [1, 11, 5, 7, 10] are driven by unique control points.
Distributed systems [9, 12] are composed of intelligent de-
vices. Federated systems [16, 13, 15] are commonly de-
signed as multi-agents systems. The qualities established
in Sect. 1 are used to compare SAASHA with representative
home automation systems.

10SGi Alliance, http://www.osgi.org
2UPnP forum, http://www.upnp.org
3http://felix.apache.org/site.index.html
“http://www.cybergarage.org/



e Configurability: No system offers full system setting
capabilities. SAASHA partly fulfills this quality by allow-
ing administrators to set agent perception but, for now, they
cannot choose scenario deployment strategies.

e End-user orientation: Systems have predefined sce-
narios the implementation of which depends on the context.
Only [12] proposes a scenario definition GUI but it is di-
rected to expert-users. These scenarios also are restricted to
sequences of services. [1, 11] simply enable users to trigger
services. SAASHA enables users to define complex custom
scenarios based on events and conditions.

e Context-awareness: All the reviewed systems are
aware of device appearance or disappearance (environ-
ment), but only two of them [5, 7], apart from SAASHA,
detect component failure (system). Even federated systems
are not aware of agents’ failure.

e Autonomic reconfiguration: When a device fails (en-
vironment), centralized and federated systems propose a
reconfiguration which amounts to uninstall components
and deploy others. In distributed systems, device fail-
ure stops a set of scenarios but no reconfiguration is pro-
posed for recovery. Finally, no existing system except
SAASHA manages conflicting scenarios (system). However,
SAASHA does not yet handle agent’s failure.

e Dynamic adaptation: Scenario implementation (sce-
nario) is performed dynamically in most systems. It consists
in the dynamic deployment of a set of components. In dis-
tributed systems, it is done by adding rules. Finally, unlike
SAASHA, systems do not dynamically integrate new system
settings (system).

7 Conclusion and perspectives

This paper presented SAASHA, a Self-Adaptable Agent
System for Home Automation that enables users to define
scenarios to orchestrate services and events provided by de-
vices from the environment. SAASHA agents connect to
the environment and adapt themselves by generating and
assembling control components (that control devices) and
coordination components (that orchestrate control compo-
nents to implement user-defined scenarios). Our solution
offers a simple means to express user scenarios that relies
on the system’s “intelligence” to automate the adaptation
and deployment agents. Finally, SAASHA handles conflict-
ing scenarios and device failures automatically. Preliminary
experiments were conducted on a small set of agents and
virtual devices. Perspectives are to graphically simulate a
home environment to conduct larger scale tests and demon-
strate easier. We will also need to manage agents’ failure re-
covery. Furthermore, we plan to develop a GUIA taxonomy
to set access rights to services (eg. for parental control).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

[11]

[12]

[13]

[14]

(15]

[16]

S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu. Ubig-
uitous computing using sip. In 13th Int. Wkshop on NOSS-
DAV, pages 82-89, New York, USA, 2003. ACM.

A. Bottaro, A. Gerodolle, and P. Lalanda. Pervasive service
composition in the home network. In IEEE 21°¢ Int. Conf.
on AINA, Niagara Falls, Canada, pp 596-603, May 2007.

J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier, and
C. Marin. A dynamic-SOA home control gateway. In /IEEE
Int. Conf. on SCC, Chicago, USA, pp 463-470, Sept. 2006.
M. Burnett, S. K. Chekka, and R. Pandey. FAR: An end-user
language to support cottage e-services. In Proc. IEEE Int.
Symp. on Human-Centric Computing Languages and Envi-
ronments, Stresa, Italy, pp 195-202, May 2001.

G. Grondin, N. Bouraqadi, and L. Vercouter. MaDcAr: An
abstract model for dynamic and automatic (re-)assembling
of component-based applications. In 9" Inr. Symp. on
CBSE, Vasteras, Sweden, LNCS, 4063:360-367, June 2006.
F. Hamoui, M. Huchard, C. Urtado, and S. Vauttier. Spec-
ification of a component-based domotic system to support
user-defined scenarios. In 27°' Int. Conf. SEKE, Boston,
USA, pp 597-602, July 2009.

V. Hourdin, J.-Y. Tigli, S. Lavirotte, G. Rey, and M. Riveill.
SLCA, composite services for ubiquitous computing. In
Int. Conf. on Mobile Technology, Applications, and Systems,
New York, USA, pp 1-8, 2008. ACM.

J.-Y. Jung, J. Park, S.-K. Han, and K. Lee. An ECA-based
framework for decentralized coordination of ubiquitous web
services. Inform. & Soft. Tech., 49(11-12):1141-1161, 2007.
T. Kirste. Ambient intelligence: Towards smart appliance
ensembles. In From Integrated Publication and Information
Systems to Information and Knowledge Environments, pages
261-270. Springer, 2005.

G. Nain, E. Daubert, O. Barais, and J.-M. Jézéquel. Using
MDE to build a schizophrenic middleware for home/buil-
ding automation. In /st Europ. Conf. on ServiceWave, pages
49-61, Madrid, Spain, 2008.

T. Nakajima and I. Satoh. A software infrastructure for sup-
porting spontaneous and personalized interaction in home
computing environments. Personal Ubiquitous Comput.,
10(6):379-391, 2006.

M. Nakamura, H. Igaki, H. Tamada, and K. ichi Matsumoto.
Implementing integrated services of networked home appli-
ances using service oriented architecture. In 2™? Int. Conf.
on SOC, New York, USA, pp 269-278, Nov. 2004. ACM.
M. Son, D. Shin, and D. Shin. Design and implementation
of the intelligent multi-agent system based on web services.
In IEEE 7th Int. Conf. on WAIMW, Washington, USA, 2006.
C. Szyperski. Component Software: Beyond Object-Orien-
ted Programming. Addison-Wesley, 2002.

M. Vallée, F. Ramparany, and L. V. cou ter. Us-
ing device services and flexible composition in ambient
communication environments. In Ist Inter. Wkshop on
RSPSI, http://www.igd.thg.de/igd-al/RSPSI/papers/RSPSI-
Vallee.pdf, 31/05/2010, 8 pages, Dublin, Ireland, May 2006.
C.-L. Wu, C.-F. Liao, and L.-C. Fu. Service-oriented smart-
home architecture based on OSGi and mobile-agent technol-
ogy. IEEE Trans. on SMC, 37(2):193-205, 2007.



