
Architecture-centric component-based
development needs a three-level ADL

Huaxi (Yulin) Zhang, Christelle Urtado, and Sylvain Vauttier

LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
{Huaxi.Zhang, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract. Architecture-centric, component-based development inten-
sively reuses components from repositories. Such development processes
produce architecture definitions, using architecture description languages
(Adls). This paper proposes a three step process. Architecture specifi-
cations first capture abstract and ideal architectures imagined by ar-
chitects to meet requirements. Specifications do not describe complete
component types but only component roles (usages). Architecture config-
urations then capture implementation decisions, as the architects select
specific component classes from the repository to implement component
roles. Finally, architecture assemblies define how components instances
are created and initialized to customize the deployment of architectures
in their own execution contexts. This development process is supported
by a three-level Adl which enables the separate definition of these three
representations. The refinement relationships between these architecture
representations are also discussed.

1 Introduction

Component-based software development (Cbsd) consists in two activities: the
development of software components for reuse and the development of software
applications by the reuse of components. The first activity can be managed by
classical software development processes, with an analysis, a design and then
a coding phase. The produced software modules, encapsulated as component
classes, are then stored and indexed in repositories to be reused later on. The
second activity corresponds to a more specific and still scarcely studied devel-
opment processes. We propose an architecture-centric development process that
aims at defining the structure of an application as a set of reused components and
a set of connections between them, using a dedicated language called an Archi-
tecture Description Language (Adl). This process is structured in three steps,
through which architecture definitions are gradually refined, from abstract to
concrete representations. After a classical analysis step, architecture specifica-
tions first capture design decisions as ideal architectures imagined by architects
to meet the requirements. Specifications do not describe complete component
types but only component roles (usages). These roles are used to search for
matching component classes in repositories. Specification and roles are thus key
concepts to integrate component reuse effectively in the development process.



Second, architecture configurations capture implementation decisions, as the ar-
chitects select specific component classes to implement component roles. Finally,
architecture assemblies define how components instances are created and initial-
ized to customize the deployment of architectures in different execution contexts.
Our process is supported by an three-leveled dedicated Adl, called Dedal, which
enables the explicit and separate definitions of architecture specifications, con-
figurations and assemblies. This way, a single abstract architecture definition
can be refined into many concrete architecture definitions, to foster not only
the reuse of components but also of architectures. The refinement relationships
between these separate architecture representations — i.e. the relationship be-
tween the component roles, classes and instances they are composed of — are
proposed to control and verify the global coherence of these multi-level architec-
ture definitions.

The remaining of this paper is organized as follows. Section 2 introduces
our proposed architecture-centric, reuse-based development process. It studies
how existing Adls are suitable for it. Section 3 presents the different component
description levels supported in Dedal, our proposed Adl to support this devel-
opment process. Section 4 presents the different architecture description levels
which can be expressed in Dedal, along with the refinement relations between
them. Section 6 concludes with future work directions.

2 Software Architectures in CBD

2.1 A Development Process for Component Reuse

Component-based software development is characterized by its implementation
of the “reuse in the large” principle. Reusing existing (off-the-shelf) software
components therefore becomes the central concern during development. Tradi-
tional software development processes cannot be used as is and must be adapted
to component reuse [1, 2]. Figure 1 illustrates our vision of such a development
process which is classically divided in two:

– the component development process (sometimes referred to as component
development for reuse), which is not detailed here. This development pro-
cess is the producer of components that are stored in repositories for later
consumption by the component reuse process.

– and, the component-based software development process (referred to as com-
ponent-based software development by reuse) that describes how previously
developed software components can be used for software development (and
how this reuse process impacts the way software is built).

The proposed component-based software development process deliberately
focuses on the produced artifacts (architecture descriptions, as models of the
software) for each development step. For simplicity’s sake, it is also exclusively
“reuse-centered” and does not describe how components should be developed



Component development for reuse
Lifecycle step Lifecycle stepProduction

Component
development and

documentation

Component
development and

documentation

Component code
storage and
indexation

Component code
storage and
indexation

Component
code & models

Component
repository

System requirement
analysis

System requirement
analysis

Architecture
specification
Architecture
specification

Architecture
configuration
Architecture
configuration

Instantiated
component assembly

Instantiated
component assembly

Production

Instantiated software
component assembly

Concrete architecture
configuration

Abstract architecture
specification

Functional & non functional
requirements

Caption:

Component
search

Component
instantiation

Uses
Produces
Precedes

Component-based software development by reuse

Fig. 1. Component-based software development process

from scratch if no component is found that matches or closely matches specifi-
cations, adapted if no existing component type perfectly matches specifications,
tested and integrated or, physically deployed.

In this component-based software development process, software is considered
to be produced by the reuse of components that have previously been stored
and indexed in a component repository. It decomposes in three steps each of
which produces a description that models the view of the architecture at this
development step:

1. Model of requirements. After a classical requirement analysis step, architects
establish the abstract architecture specification. They define which func-
tionalities should be supplied by components, which interfaces should be
exported by components, and how interfaces should connect to build a soft-
ware system that meets the requirements.

2. Model of design. In a second step, architects create architecture configura-
tions that define the sets of component implementations (classes) by search-
ing and selecting from the component repository. Abstract component types
from the architecture specification then become concrete component types
in architecture configurations.

3. Model of runtime. In a third step, configurations are instantiated into com-
ponent instance assemblies and deployed to executable software applications.

The claim of this paper is that an architectural description should correspond
to each of the three steps of the component-based software development process.
In other words, architectures should be described from all specification (model of
requirements), configuration (model of design) and assembly (model of runtime)
point of views. These three descriptions should reflect the architect’s design de-
cisions at each step of the development cycle and be expressed using an adequate



Adl. State-of-the-art Adls have been analyzed from this perspective, trying to
answer the following questions (that provide a taxonomy for comparison):

– Do existing Adls support multiple view representations?
– If so, are these views used to reflect successive development steps?
– In cases where several descriptions of a given architecture coexist, which

development step can they be associated to?
– Which information on software is captured? In which view / level represen-

tation?

2.2 Expressiveness of Existing ADLs

A software system architecture [3] gathers design decisions on the system. It is
expressed using an Adl which, in most cases, provides information on the struc-
ture of the software system listing the components and connectors the system
is composed of. Quality attributes are sometimes provided (e.g. xAdl [4]). The
dynamic behavior of systems is often described (e.g. C2SADEL [5], Wright [6],
Sofa [7]) but their descriptions are not homogeneous as various technologies
(e.g. message-based communication, Csps, regular expressions) are used.

When systems are too complex to easily be described, two classical mech-
anisms can be used to split descriptions into smaller ones. Hierarchical decom-
position enables to view the system at various granularities (e.g. Darwin [8],
Sofa [7] or Fractal Adl [9]). Systems are composed of sub-systems that can fur-
ther be described at a finer level. Thematic decomposition amounts to consider
the system from distinct viewpoints (e.g. syntactic and behavioral diagrams of
Uml [10]). Whole systems are seen from several partial viewpoints that make
each description focus on some system attributes.

Systems can also be described at various steps of their life-cycles. To our
knowledge, no Adl really includes this “time” dimension. Some works such as
Uml [10] or Taylor et al. [3] implement or describe close notions. Uml makes it
possible to describe object-oriented software at various life-cycle steps but this
capability is not transposed in their component model. Taylor et al. [3] distin-
guish two description levels for architectures at design and programming time,
respectively called perspective (or as-intended) and descriptive (or as-realized)
architectures. However, as far as we know, they do not propose any Adl or
metamodel to concretely implement these two architecture descriptions. Garlan
et al. [11] propose a three-layer framework (task, model and runtime layers) and
points out the importance of three levels for dynamic software evolution man-
agement. Beside their having close notions, these existing works do not propose
such descriptions that would follow the three identified steps of component-based
software development.

We then examine the representative Adls to see which levels of architecture
descriptions are supported (as shown in Tables 1 and 2). As far as we know, the
studied Adls unfortunately do not enable the three levels that correspond to
lifecycle steps to be all described. This analysis results in requirements for the
language presented in this paper:



Table 1. Expressiveness of existing ADLs — Modeling of the three lifecycle steps

ADL Specification Configuration Assembly

C2SADEL X X ×
Wright × X ×
Darwin × X ×
Unicon × X ×
SOFA 2.0 × X ×
FractalADL × X ×
xADL 2.0 × X X

Table 2. Expressiveness of existing ADLs — Component representations

ADL Abstract
component
type

Concrete
component
type

Component
class

Component
instance

C2SADEL × X X ×
Wright × X X ×
Darwin × X X ×
Unicon × X X ×
SOFA 2.0 × X X ×
FractalADL × X X ×
xADL 2.0 × X X X

1. No Adls presented in Table 1 is tailored to Cbd. Switching to such a reuse-
centered development process shall impact the description language.

2. No Adls presented in Table 1 models component types in an abstract way in
order to support the search and selection of concrete component in compo-
nent repositories. Concrete components in architecture configurations should
not be strictly identical to abstract component types described in their ar-
chitecture specification. As components pre-exist, the specification should
define abstract (ideal) and partial component types while configurations de-
scribe concrete (satisfying) components that are going to be used (as claimed
by Taylor et al. [3]).

3. Connectors should not necessary be explicit but the architect should have the
possibility to explicit them when needed. Explicit connectors model specific
connection types and can be reused from one design to another. However,
in most situations, connectors can be system-generated and thus remain
implicit for simplicity’s sake.

4. Most Adls do not model the running system (assembly level) or component
instances, except xAdl 2.0. Adls should include some description on how
components classes are instantiated and what are the characteristics of the
running assemblies (constraints on component state values).

5. Components should possibly be primitive (implemented by an implemen-
tation class) or hierarchically composed of components (implemented by a
configuration).



6. Component types should be reusable. This implies that their description is
modularized (outside architectures).

7. Both structural and behavioral viewpoints should be provided for both com-
ponents and architectures.

2.3 Example of a Bicycle Rental System

Figure 2 shows the example used throughout the paper: the architecture spec-
ification of a bicycle rental system (Brs). A BikerGUI component manages a
user interface. It cooperates with a Session component which handles user com-
mands. The Session component cooperates with the Account and Bike&Course
components to identify the user, check the balance of its account, assign him an
available bike and then calculate the price of the trip when the rented bike is
returned. In the following sections, we will use a part of this system to illustrate
our concepts and Adl syntax.

The two following sections present Dedal, the proposed Adl which spans the
three levels of architecture descriptions. Dedal enables the description of abstract
architecture specifications, concrete architecture configurations and instantiated
component assemblies. It also supports a controlled architecture evolution pro-
cess the description of which is out of the scope of this paper (see [12] for this
aspect).

Fig. 2. Brs abstract architecture specification

3 Component Descriptions in the Three Levels of Dedal

Dedal models architectures at three separate abstraction levels, each of which
contains different forms of components and connectors. For now, Dedal mainly
focuses on modeling components. At the specification level, components are mod-
eled as roles which are requirement models for concrete component search. These
specifications thus are abstract and partial. At the configuration level, compo-
nents are modeled as (whole) component classes which realize the specifications.



Several component classes might correspond to a single component role as there
might exist several concrete realizations of a single specification. At the assem-
bly level, concrete component classes are instantiated into component instances
that represent runtime components and their parameterizations. Figure 3 shows
a complete example of components at three levels.

Fig. 3. The Session component role, some possible concrete realizations and some of
their instantiations

3.1 Components in Abstract Architecture Specifications

Component roles model abstract component types in that they describe the roles
components should play in the system. A component role lists the minimum list
of interfaces (both required and provided) the component should expose and the
component behavior protocol that describes the behavior of the component in
the architecture (dynamics of the architecture). As they define the requirements
of the architect (its ideal view) to guide the search for corresponding concrete
components, component roles are abstract and partial component representa-
tions (e.g. Session component role on Fig. 3). Dedal uses the protocol syntax
of Sofa [7] to describe component behavior as regular expressions1. Other for-
malisms could have been used instead; the notation chosen is interesting as it is
compact and is implemented as an extension of the Fractal component model we
used for or experimentation, with companion verification tools. Component pro-
tocols capture the behavior of components in their context describing all valid
sequences of emitted function calls (emitted by the component and addressed to
neighbor components) and received function calls (received by the component
from neighbor components). As component roles are abstract component spec-
ifications, Dedal modularly describes them outside architecture specifications,
so as they can be reused from a specification to another (which would not be
possible if they were embedded). Figure 4 shows the description of the Session
component role. This description contains (a part of) the Sofa-like description
of its behavior.
1 !i.m (resp. ?i.m) denotes an outgoing (resp. incoming) call of method m on interface
i. A+B is for A or B (exclusive or) and A;B for B after A (sequence).



component role Session
required interfaces BikeOprs; CourseOprs; AccountOprs
provided interfaces Account; Bike
component behavior
(!Session.Bike.findB,
?Session.BikeOprs.findB;)
+
(!Session.Account.login,
?Session.AccountOprs.checkID;)
. . .

Fig. 4. Session component role

3.2 Components in Concrete Architecture Configurations

At configuration level, components are modeled in two ways with component
types and component classes. Figure 5 provides a close-up view of the relation-
ships between a component role (that model an abstract and partial view of a
required component), a component type that models the complete type of some
existing concrete implementation, a component class that represent the concrete
component implementation and a parameterized component instance.

Fig. 5. BikeCourseDBClass composite component

Component types represent the full types of at least one (maybe several) ex-
isting component implementations. They are defined by describing the interfaces
and behavior of these component classes. Component types are reusable as they
can be implemented by multiple component classes which possess the same in-
terfaces and component behavior. The BasketType component type description
of Fig. 6 is an example of component type description.

Component classes represent concrete component implementations. Each com-
ponent class points to the component type it implements. Component classes can
either be primitive or composite.

Primitive component classes (e.g. Basket as described in Fig. 7) define the
reused components by describing their interfaces, behavior, version2 and imple-
2 This information (as well as all the versioning information included in other descrip-

tions later on) serves evolution management purposes that are not described in this
paper. For more information, the interested reader might refer to [12].



component type BasketType
required interfaces BikeOprs; CourseOprs; AccountOprs; CampusOprs;

AccessoryOprs
provided interfaces Account; Bike
component behavior
(!BasketType.Bike.findB,
?BasketType.BikeOprs.findB;)
+
(!BasketType.Account.login,
?BasketType.AccountOprs.checkID;)
. . .

Fig. 6. Description of the BasketType component type

menting class. Existing models usually do not include links to the implementaing
class as they assume there is a single implementation. In Dedal, components can
thus have several implementations (which can be useful to have implementations
versioned in such cases as software product lines management).

component class Basket
implements BasketType
using fr.ema.locaBike.Basket
attributes string company; string currency

Fig. 7. The Basket (primitive) component class description

Composite component classes will be introduced in Sect.4.2. Both primitive
and composite component classes can export an attribute list (as exemplified
on Fig. 7 and 11). Attributes are not mandatory but can be declared as observ-
able / visible properties for component classes so as to be able to set assembly
constraints on attribute values in the instantiated component assembly level.

3.3 Components in Instantiated Software Component Assemblies

Component instances document the real artifacts that are connected together
in an assembly at runtime. They are instantiated from the corresponding com-
ponent classes. They might define constraints on components’ attributes that
reflect design decisions impacting component states (attribute values) over time.
They also set the initial component state by initializing attributes values.

component instance BasketLocaBike
instance of Basket (1.0)
initiation state company="LocaBikecurrency"; currency=="Euro."

Fig. 8. The BasketLocaBike component instance description



4 Three Levels of Architecture Description in Dedal

4.1 Abstract Architecture Specifications

Abstract architecture specifications (Aass) are the first level of software archi-
tecture descriptions. They provide a generic definition of the global structure
and behavior of software systems according to previously identified functional
requirements. They model the requirements expressed by the architect to serve
as a basis to search for concrete component to create concrete architecture con-
figurations. These architecture specifications are abstract and partial: they do
not identify concrete component types that are going to be instantiated in the
software system. They only describe the “ideal” component types from the ap-
plication point of view. Types of concrete components need not be identical to
abstract types. As Cbd processes favors component reuse, component type com-
patibility should be more permissive than strict identity but still guarantee safety
of use. Compatible concrete component types can, for example, provide more
functionalities than strictly specified (extra functionality will remain unused)
or provide more generic functionalities (use of polymorphism of object-oriented
languages)3.

specification BRSSpec
component roles
BikeCourse; BikeCourseDB
...
connections
connection connection1
client BikeCourse.BikeQS
server BikeCourseDB.BikeQS
connection connection2
client BikeCourse.CourseQS
server BikeCourseDB.CourseQS
...
architecture behavior
(!BikeCourse.BikeOprs.selectBike;
?BikeCourse.BikeQS.findBike;
!BikeCourseDB.BikeQS.findBike;)
+
(!BikeCourse.CourseOprs.startC;
?BikeCourse.CourseQS.findCourse;
!BikeCourseDB.CourseQS.saveCourse;)
...

version 1.0

Fig. 9. Aas of the Brs (partial)

In Dedal, an Aas is composed of a set of component roles, a set of connec-
tions and its architecture behavior. Figure 9 provides an example of the Aas
for the Brs. For readability reasons, this description represents only a small

3 The reader further interested about component compatibility can refer to authors’
work on component repositories [13] and component substitution [14].



part of the Brs Aas depicted in Fig. 2. Connections make interactions be-
tween two components possible. They define which component interfaces are
bound together. connection1 and connection2 from Fig. 9 are such connections.
Architecture behaviors describe the protocols of complete architectures –
meaning all possible interactions between their constituent components. As for
component protocols, the syntax used is that of Sofa protocols4. Compatibility
between individual component protocols and the protocol of their containing
architecture as well as compatibility between the protocols of two connected
components is not studied in this work as we interface our language with cor-
responding mechanisms (trace inclusion) from Sofa. Figure 9, that describes
the Brs architecture specification, contains the Brs architecture protocol. The
reader can intuitively check that the protocol of the BikeCourse component role
is compatible with (“included” in) the protocol of the Brs architecture.

4.2 Concrete Architecture Configurations

Concrete architecture configurations (Cacs) are the second level of system ar-
chitecture descriptions. They result from the search and selection of real compo-
nent types and classes in a component repository. These component types must
match abstract component descriptions from the architecture but need not be
identical; compatibility is sufficient. Component classes must be valid implemen-
tations of their declared component type. Cacs describe the architecture from
an implementation viewpoint (by assigning component roles to existing compo-
nent types). Architecture configurations thus list the concrete component and

configuration BRSConfig
implements BRSSpec (1.0)
component classes
BikeTrip (1.0) as BikeCourse;
BikeCourseDBClass (1.0) as BikeCourseDB

version 1.0

Fig. 10. A possible Cac for the Brs

connector classes which compose a specific version of a software application.
The architecture of a given software is thus defined by a unique Aas and pos-
sibly several Cacs. For a given software, each architecture configuration must
conform to the architecture specification. This means that each component or
connector class used in an architecture configuration must be a legal implemen-
tation of the corresponding component role or connection in the architecture
specification. Figure 10 describes the architecture configuration of the Brs. The
explicit description of connector classes is possible (as exemplified on Fig. 12)
but not mandatory. In cases where they are implicit, we consider connectors as
4 !c.i.m (resp. ?c.i.m) denotes an outgoing (resp. incoming) call of method m on

interface i of component c.



generic entities which are provided by containers (execution environments) in
which configurations are deployed. Connections are automatically administered
by containers at runtime to manage the instantiation of configurations. In cases
where connectors are explicitly added, their descriptions define the specific con-
nector classes that reflect design choices and that must be used to manage special
communication, coordination, and mediation schemes. Composite component
classes are components the implementation of which is not a simple class but
a complete configuration that differ from the above described configurations in
that it has some unconnected interfaces. The composite component class con-
cept enables hierarchical composition of architectures which has been identified
as an effective means to manage system complexity and concretely implement
reuse (as whole configurations can be considered as coarser grained components).
Composite component classes further define how unconnected interfaces from the
inner configuration can be delegated to interfaces of the composite component.
As for provided and required interfaces in primitive components, delegated inter-
faces are implementations of the corresponding provided and required interfaces
in the corresponding component role. Figures 11 and 12 give the example of
the composite component class BikeCourseDBClass that implements the Bike-
CourseDB role where the BikeQS provided interface of the BikeData component
inside the BikeCourseDBConfig configuration is delegated as a provided inter-
face of the composite component that implements the BikeQS interface of the
BikeCourseDB component role. Figure 11 shows a graphical representation of
the same BikeCourseDBClass component.

component class BikeCourseDBClass
implements BikeCourseDB
using BikeCourseDBConfig (1.0)
delegated interfaces
provided
BikeCourseDBConfig.BikeData.BikeQS
as BikeCourseDB.BikeQS
provided
BikeCourseDBConfig.TripData.CourseQS
as BikeCourseDB.CourseQS

version 1.0
attributes company

Fig. 11. The BikeCourseDBClass composite component class and its description

Conformance between an AAS and a CAC is a matter of conformance
between component roles and the component classes that supposedly implement
them. Many conformance relations could be defined, from stricter to very loose
ones. On the one hand, we defend that reused components need not be exactly
identical to specifications because being too strict in this matter might seriously
decrease the number of reuse opportunities. On the other hand, it is expected
from a conformance relation that it enables verifications that guarantees good



specification BikeCourseDBSpec
component roles
BikeDB; CourseDB
connections
connection ConnectionCourseQuery;
client BikeDB.CourseQuery
server CourseDB.CourseQuery

version 1.0

configuration BikeCourseDBConfig
implements BikeCourseDBSpec (1.0)
component classes
BikeData (1.0) as BikeDB;
TripData (1.0) as CourseDB
connector classes
CourseQuery (1.0) as

ConnectionCourseQuery;
version 1.0

Fig. 12. Descriptions of the BikeCourseDBSpec abstract specification and of the Bike-
CourseDBConfig inner configuration

chances that the thought component combination will execute. The rule of the
thumb that can be used is that concrete components must provide at least what
is the specification declare it provides and require less than what the specification
already requires. This translates into rules for interfaces and rules for behavior
protocols:

– the provided interfaces list of the concrete component class must contain all
the interfaces specified in the component role,

– all the required interfaces of the concrete component class must be specified
in the component role,

– the behavior of a component class includes (in the sense of trace inclusions)
the behavior specified in the component role.

Variations on these rules can further consider interface specialization rules as
in [13]. Figure 7 shows an example of a concrete component class (BikeTrip)
that has a required interface (LocOprs) that is not in the specification (Bike-
Course component role) it conforms to. In the case of composite components,
delegated interfaces of provided (resp. required) direction are considered exactly
as if they where provided (resp. required) interface of primitive components. In-
deed, when considered externally, composite components can be seen as if they
where primitive. Figure 7 provides an example of the BikeCourseDBClass com-
posite component class, that conforms to the specification of the BikeCourseDB
component role.

4.3 Instantiated Software Component Assemblies

Instantiated software component assemblies (Iscas) are the third level of system
architecture descriptions. They result from the instantiation of the component
classes from a configuration. They provide a description of runtime software sys-
tems and gather information on their internal states. Indeed, this description
level enables the record of state-dependent design decisions [15]. Iscas list the
component and connector instances that compose a runtime software system,
the attributes of this software system, and the assembly constraints the compo-
nent instances are constrained by. Figure 13 gives the description of a software
assembly that instantiates the Brs architecture configuration of Fig. 10.



assembly BRSAss
instance of BRSConfig (1.0)
component instances
BikeTripC1; BikeCourseDBClassC1
assembly constraints
BikeTripC1.currency="Euro.";
BikeCourseDBClassC1.company=
BikeTripC1.company

version 1.0
component instance BikeTripC1
instance of BikeTrip (1.0)
component instance BikeCourseDBClassC1

instance of BikeCourseDBClass (1.0)

Fig. 13. Component assembly description of the Brs

The explicit description of connector instances is possible but not manda-
tory. In cases where they are implicit, we consider them as generic entities which
are provided by containers (execution environments) in which configurations
are deployed. In cases where connector instances are explicitly added, their de-
scriptions define the specific attributes that reflect implementation choice to
meet different situation. By default, component classes can be instantiated into
multiple component instances. When more precise cardinality information is
needed, it is expressed in component role descriptions using minInstances and
maxInstances that define the minimum and maximum numbers of component
instances that are permitted to instantiate from the component class which im-
plements this component role. By this means, component classes do not include
this configuration-dependent information and remain reusable. In the assembly
level, assembly constraints that restrain the valid number of instances will be
checked against the cardinality information defined in the component role (in
the specification level). There is no rule to constrain the name of component
instances of a given component class. Assembly constraints define conditions
that must be verified by attributes of some component instances of the assem-
bly, to enforce its consistency. Such assembly constraints are not mandatory. For
now, Dedal only permits to list several constraints that must all be enforced and
that either:

– limit the possible values for an attribute to a given constant,
– restrain the cardinality of some connection end (i.e.,the number of instances

of the component class that stands at the end of the connection in the
configuration) to a given constant,

– or, enforce equality of the values of two distinct attributes that pertain to
two distinct component instances of a given component assembly.

Such assembly constrains are illustrated on Fig. 13 where the value of the cur-
rency attribute of component BikeTripC1 is fixed to Euro and where the value of
the attribute company of the BikeCourseClassDBC1 component must be main-
tained identical to the value of attribute company of component BikeTripC1.
Another example that involves cardinalities would be expressed as the assembly



constraint InstanceNbr(BikeTrip)=2 that mean that exactly two component in-
stances of the BikeTrip component class should be instantiated in this system.
The cardinality of the BikeTrip component class is recorded in the BikeCourse
component role specification. These constraints are very simple and do not yet
enable the expression of alternatives, negation, nor the resolution of possible con-
flicts. Such extended assembly constraint management is one of the perspectives
for this work for which we plan to take inspiration from systems that manage
architectural styles as constraints sets [6, 16].

Conformance between a CAC and an ISCA is quite straightforward.
All component instances of the assembly must be an instance of a correspond-
ing component class from its source configuration (and reciprocally). Confor-
mance also includes the verification that attribute names used in an assembly
constraint of some component assembly pertain to the component classes the
components of the assembly are instances of. For example, the assembly con-
straint BikeTripC1.currency=”Euro.” of Fig. 13 has the conformance process
check whether the BikeTrip component class (from which BikeTripC1 is instan-
tiated) possesses a currency attribute.

5 Implementation of Dedal in the Arch3D tool suite

The Dedal Adl presented in this paper has been implemented in the Arch3D
tool suite. The language has been implemented twice: as an XML-based Adl
and as a Java-based Adl. The tools also propose a component model which en-
ables to instantiate and manipulate corresponding assemblies at runtime which
is extended as an extension of Julia, the open-source java implementation of the
Fractal component platform5. Our extension of the Fractal platform tools has
two purposes: to support the explicit and separate representation of specifica-
tions and configurations and, to embed these representations in the component
model. The three architecture representations are then available and manipulable
at runtime, also providing a full support for evolution management. The Arch3D
Editor tool provides a graphical console to create, view and modify Dedal-based
Fractal architectures. Architects can simultaneously display the different repre-
sentations of an architecture and work on them.

6 Conclusion

Dedal enables the explicit and separate representations of architecture specifica-
tions, configurations and assemblies. Architecture design decisions can thus be
precisely captured and traced throughout the development process. The three-
level syntax of Dedal supports the expression of requirements by the means
of abstract and partial component roles that are used as the main conceptual
support for the search of reusable components to be included in configurations.
The model of the runtime system (the instanciated component assembly) is rich

5 http://fractal.ow2.org/



enough to serve as the baseis of a full evolution process [12]. A perspective for
this work is to experiment the use of Dedal to manage component-based software
product lines.

References

1. Crnkovic, I., Chaudron, M., Larsson, S.: Component-based development process
and component lifecycle. In: Proc. of the Intl. Conf. on Software Engineering
Advances, Papeete, French Polynesia (Oct. 2006) 44

2. Chaudron, M., Crnkovic, I.: Component-based Software Engineering. In: Software
Engineering; Principles and Practice. Wiley (2008) 605–628

3. Taylor, R., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, The-
ory, and Practice. Wiley (Jan. 2009)

4. Dashofy, E., van der Hoek, A., Taylor, R.: A highly-extensible, XML-based ar-
chitecture description language. In: Proc. of 2nd WICSA Conf., Amsterdam, The
Netherlands (2001) 103–112

5. Medvidovic, N., Rosenblum, D., Taylor, R.: A language and environment for
architecture-based software development and evolution. In: Proc. of ICSE Conf.,
Los Angeles, USA (May 1999) 44–53

6. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3) (1997) 213–249

7. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans.
Softw. Eng. 28(11) (2002) 1056–1076

8. Magee, J., Kramer, J.: Dynamic structure in software architectures. SIGSOFT
Softw. Eng. Notes 21(6) (1996) 3–14

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
component model and its support in Java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36(11-12) (2006) 1257–1284

10. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
(The 2nd Edition). Addison-Wesley (2005)

11. Garlan, D., Schmerl, B., Chang, J.: Using gauges for architecture-based monitoring
and adaptation. In: Proc. of Working Conf. on Complex and Dynamic Systems
Architecture, Brisbane, Australia (Dec. 2001)

12. Zhang, H.Y., Urtado, C., Vauttier, S.: Architecture-centric development and evo-
lution processes for component-based software. In: Proc. of 22nd SEKE Conf.,
Redwood City, USA (July 2010)

13. Aboud, N.A., Arévalo, G., Falleri, J.R., Huchard, M., Tibermacine, C., Urtado,
C., Vauttier, S.: Automated architectural component classification using concept
lattices. In: Proc. of the Joint WICSA / ECSA Conf., Cambridge, UK (Sept. 2009)

14. Desnos, N., Huchard, M., Tremblay, G., Urtado, C., Vauttier, S.: Search-
based many-to-one component substitution. J. Softw. Maint: Res. Pract. 20(5)
(Sept. / Oct. 2008) 321–344

15. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging disci-
pline. Prentice-Hall. (1996)

16. Cheng, S.W., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P.:
Using architectural style as a basis for system self-repair. In: Proc. of 3rd WICSA
Conf., Montreal, Canada (Aug. 2002) 45–59


