
Automated and Unanticipated Flexible
Component Substitution

Nicolas Desnos1, Marianne Huchard2, Christelle Urtado1, Sylvain Vauttier1,
and Guy Tremblay3

1 LGI2P - Ecole des Mines d’Alès, Nı̂mes, France
2 LIRMM - UMR 5506 - CNRS and Univ. Montpellier 2, Montpellier, France

3 Département informatique, UQAM, Montréal, QC, Canada

{Nicolas.Desnos, Christelle.Urtado, Sylvain.Vauttier}@site-eerie.ema.fr,
huchard@lirmm.fr, tremblay.guy@uqam.ca

Abstract. In this paper, we present an automatic and flexible approach
for software component substitution. When a component is removed from
an assembly, most existing approaches perform component-to-component
substitution, relying on the fact that such a candidate component is avail-
able, which is hardly to happen because the constraints on its interfaces
are too strong. When such a component does not exist, it would be more
flexible to allow a single component to be replaced by a whole component
assembly. We propose such an automatic substitution mechanism which
does not need the changes to be anticipated and preserves the quality of
the assembly.

1 Introduction

Today, software systems are becoming voluminous and complex like never be-
fore. Component-based software engineering [1] is a good solution to optimize
the time and cost of software design while still guaranteeing the quality of the
software. Moreover, the modularity it enables allows to tame the complexity of
large systems. Typically, a component is seen as a black box which provides and
requires services through its interfaces. An architecture is built to fulfill a set of
functional objectives (its functional requirements)4 and is described as a static
interconnection of software component classes. A component assembly is a run-
time instantiation of an architecture composed of linked component instances.

In this paper, we present an automatic and flexible approach for dynamic soft-
ware component substitution. Anticipating component substitution, to overcome
component obsolescence, failure or unavailability, is not always (cognitively) pos-
sible. Repairing a component assembly after a component has been removed
while preserving its whole set of functionalities is difficult. When a component
is removed from an assembly, most existing approaches perform component-to-
component substitution [2–5]. However, these approaches rely on the fact that
such an appropriate component, candidate for substitution, is available. This
4 Our work does not yet handle non-functional requirements.



situation is hardly to happen because it is difficult to find a component that has
the same capabilities than the removed one.

When such a component does not exist, allowing a single component to be
replaced by a whole component assembly would permit more flexibility. In this
paper, we propose such an automatic substitution mechanism which does not
need the changes to be anticipated. Our approach relies on primitive and com-
posite ports for replacing a component by a whole assembly of components while
preserving the quality of the assembly.

The rest of this paper proceeds as follows. Section 2 introduces component-
based software engineering, presents existing work on component substitution
and shows their limits. Section 3 describes our proposition for dynamically re-
placing a component. We first shortly present how ports allow us to automatically
build valid assemblies [6]. We then show how this process can be used as part of
a flexible component substitution process. We also present how it is possible to
simplify the assembly by removing all the components that have become useless.
Finally, Section 4 concludes and proposes perspectives to this work.

2 Context and Related Work

2.1 Software Architecture Correctness and Completeness in CBSE

Component-Based Software Engineering [7] makes it possible to build large sys-
tems by assembling reusable components. The life cycle of a component-based
architecture can be divided into three phases: design-time, deployment-time and
runtime.

At design-time, the system is analyzed, designed and the validity of the de-
sign is checked. An architecture is built to fulfill a set of functional objectives
(its functional requirements) [8, 9]. Functional objectives are defined as a set of
functionalities to be executed on selected components. Selecting the functional
objectives is typically a task performed during the analysis step. The structure of
the architecture is described, during the design step, as a static interconnection
of software component classes through their interfaces. It requires both selecting
and connecting5 the software components to be reused. This description, typ-
ically written in an architecture description language [10], expresses both the
functional and non-functional capabilities of the architecture, as well as both
the structural and the behavioral dependencies between components. Once the
architecture is described, its validity is statically checked. Most systems verify
the correctness of the architecture; some also guarantee its completeness.

Correctness. Verifying the correctness of an architecture amounts to verifying
the connections between components and checking whether they correspond
to a possible collaboration [9]. These verifications use various kinds of meta-
information (types, protocols, assertions, etc.) associated with various structures

5 We assume that the selected components need no adaptation (or have already been
adapted).



(interfaces, contracts, ports, etc.). The finest checks are done by protocol com-
parisons, which is a combinatorial problem [11–13].

Completeness. The architecture must also guarantee that all its functional ob-
jectives are going to be supported. In other words, the connections of an ar-
chitecture must be sufficient to allow the execution of collaborations that reach
(include) all the functional objectives. We call this completeness of the ar-
chitecture [6]. Indeed, the use of a component functionality (modeled by the
connection of an interface) can necessitate the use of other functionalities which,
in turn, entail new interface connections. Such functionalities (or interfaces) are
said to be dependent. This information is captured in the description of com-
ponent behavior and depends on the context in which the functionality is called
(execution scenario). There are various ways to ensure completeness:

– For a first class of systems [14], completeness of an architecture is guaran-
teed by verifying that all the interfaces of all its components are connected.
This view makes checking completeness very simple but over-constrains the
assembly thus diminishing both the capability of individual components to
be reused in various contexts and the possibilities of building a complete
architecture, given a set of predefined components.

– To overcome the defects of the first class of systems, a second class of sys-
tems [3] defines two categories of interfaces (mandatory and optional). These
systems allow complete architectures to be built while still leaving pending
interfaces (the optional ones). This view does not complicate the checking
of completeness and increases the opportunities of building a complete ar-
chitecture, given a set of predefined components. However, associating the
mandatory / optional property to an interface regardless of the assembly con-
text does not increase the capability of individual components to be reused
in various contexts.

– The third strategy requires connecting only the interfaces which are strictly
necessary to reach completeness [12, 15, 16] by exploiting the description of
the component behavior. This is typically done by analyzing protocols which
makes completeness checking less immediate.

Example. Figure 1 illustrates that it is possible to ensure completeness of an
assembly while connecting only the strictly necessary interfaces. The Dialogue
interface from the Client component represents a functional objective and must
therefore be connected. As deducted by analyzing the execution scenario that
has to be supported, all the dependent interfaces (grayed on Figure 1) must also
be connected in order to reach completeness. For example, the Control interface
from the MemberBank component must be connected whereas the Question
interface from the Client component does not need to be connected.

Once the validity of the architecture is checked, it can be deployed (deployment-
time). Deployment requires instantiating the architecture, configuring its phys-
ical execution context and dispatching the components in this physical context.
One of the results of deployment is a component assembly: a set of linked com-
ponent instances that conforms to the architectural description.



Fig. 1. A complete assembly and a possible corresponding execution scenario

At runtime, the component assembly executes. The evolution of this assem-
bly is an important issue for the application to adapt to its environment in such
situations, as maintenance, evolution of the requirements, fault-tolerance, com-
ponent unavailability in mobile applications, etc. In this context, an important
question is: What are the possible dynamic evolutions that can be supported by
the component assembly and by the architecture itself? The remaining of this
paper is a tentative answer to this question.

2.2 Dynamic Architecture Reconfiguration

To ensure that a component assembly will remain valid at runtime, all systems
try to control how the assembly evolves. Different evolution policies exist:

– The simplest and most restrictive is to forbid dynamic reconfigurations: as-
semblies cannot evolve at runtime. This policy is not satisfactory.

– Some systems [17, 3] allow the structure defined in the architecture to be
violated when modifying component assemblies at runtime. They authorize
component and connection modifications (addition, suppression) based on
local interface type comparisons. The result is a lack of control on the as-
sembly: its validity is not guaranteed anymore.

– The third category of systems ensures that component assemblies always con-
form to the structure defined in the architecture. All the possible evolutions
must therefore be anticipated at design-time and described in the architec-
ture itself [10]. Different techniques are used. ArchJava [18] and Sofa 2.0 [5]
use patterns to know which interfaces can be connected or disconnected and



which components can be added or removed. Others [19, 20] use logical rules
that are a more powerful means to describe the possible evolutions. These so-
lutions complicate the design process and make anticipation necessary while
it is not always (cognitively) possible [5, 21].

Dynamic Component Removal. Among the situations to handle to enable com-
ponent assembly evolution is dynamic component removal. When removing a
component from an assembly, the main issue is to ensure that there will not
be any functional regression. The third category of systems typically allow a
removed component to be replaced by a component which provides compatible
services in order for the asssembly to still conform to the architecture. The an-
ticipation of the possible evolutions allow these systems to ensure that the new
component assembly will still satisfy the validity property that has been checked
statically on the architecture at design-time. There are two major interpretations
of component compatibility. In most of the systems [22, 2, 5, 3], the components
must strictly be compatible: the new component must provide at least all the
provided interfaces the removed component did and it cannot require more re-
quired interfaces. In [23], compatibility is less restrictive and context-dependent.
If a provided interface from the removed component is not used by another com-
ponent in the assembly (not used in this context), the new component is not
required to provide this interface (as it is not necesssary in this context). On
the other hand, the new component can have extra required interfaces as soon
as those interfaces find a compatible provided interface among the components
of the assembly. This context-dependent definition of component compatibility
allows better adaptability of the component assemblies.

Discussion. There are two main restrictions to the state of the art solutions
to complete a component assembly after a component has been dynamically
removed:

1. Anticipating all possible evolutions to include their description in the initial
description of the architecture at design-time is not always possible because it
requires to know all the situations that may occur in the future of the system.
Ideally, it should be better to try and manage the evolution of software
assemblies in an unanticipated way.

2. Replacing the removed software component by a single component is not
always possible because it is quite unlikely that a component having com-
patible interfaces exist among the potential candidates for substitution. In
the more general case when such an adequate component does not exist, it
might be interesting to replace the removed component by a set of linked
components that together can provide the required services.

Proposing a solution to replace a removed component by an assembly of com-
ponents in an unanticipated way while trying as much as possible to guarantee
the quality (executability) of the assembly is the initial motivation for the work
presented in this paper.



3 Automated and Unanticipated Flexible Component
Substitution

In previous work, we proposed [24] and optimized [6] a solution to automatically
build component assemblies from components, given a set of functional objec-
tives. The building process uses ports, which are extra information we suggest to
add to components, and guarantees that the suggested assemblies are complete.

The idea we develop in this paper is to use this building process in order
to re-build an assembly after a component has been removed, thus replacing a
single component by a whole sub-assembly which is a more flexible solution. This
can be done in four steps: (1) removing the target component, (2) removing all
the (consequently) dead components, (3) re-build the assembly by adding new
components and new bindings until the assembly is complete and (4) checking
the validity of the suggested assembly.

In the remaining of this section, we first briefly present how primitive and
composite ports are abstract concepts that embody the information needed to
automatically build complete assemblies and describe the automatic building
process. We then try to formalize the building process and rely on this formal-
ization to describe how it can be used for component substitution (steps 2 and
3 listed above).

3.1 Building Valid Component Assemblies from Port Enhanced
Components

This section briefly describes how adding ports to components provides a means
to automatically build complete component assemblies [24, 6]. Existing approaches
usually statically describe architectures in a top-down manner. Once the archi-
tecture is defined, they verify its validity using costly validity checking algo-
rithms [11–13]. Our building of assemblies from components obeys an iterative
(bottom-up) process. This makes the combinatorial cost of these algorithms criti-
cal and prevents us from using them repeatedly, as a naive approach would have
suggested to. To reduce the complexity, we chose to simplify the information
contained in protocols and to represent it in a more abstract and usable manner
through primitive and composite ports. Ports allow us to build a set of interest-
ing complete assemblies from which it is possible to choose and check the ones
that are best adapted to the architect’s needs.

Primitive and Composite Ports. The idea for building a complete component
assembly is to start from the functional objectives and to select the suitable
components and make necessary links between them. Completeness is a global
property that we are going to guarantee locally, in an incremental way all along
the building process. The local issue is to determine which interfaces to connect
and where (to which component) to connect them. This information is hidden
into behavior protocols where it is difficult to exploit in an incremental assem-
bly process. We are going to enhance the component model with the notion of
port, in order to model the information that is strictly necessary to guarantee



completeness in an abstract way. Primitive and composite ports will therefore
represent two kinds of connection constraints on interfaces, so that the neces-
sary connections can be correctly determined. In some way, ports express the
different usage contexts of a component, making it possible to connect only the
interfaces which are useful for completeness. As in UML2.0 [25], one can also
consider that the functional objectives of an architecture are represented by use
cases, that collaborations concretely realize use cases and contain several entities
that each play a precise role in the collaboration. Primitive and composite ports
can be considered as the part of the component that enables the component to
play a precise role to realize a given use case.

Primitive ports are composed of interfaces, as in many other component
models [25, 26]. Ports are introduced as a kind of structural meta-information,
complementary to interfaces, that group together the interfaces of a component
corresponding to a given usage context. More precisely, a primitive port can be
considered as the expression of a constraint to connect a set of interfaces both
at the same time and to a unique component.

In Figure 2, the Money Dialogue primitive port gathers the Dialogue and
the Money interfaces from the Client component. It expresses a particular us-
age context for this component. The connection between two primitive ports
is an atomic operation that connects their interfaces: two primitive ports are
connected together when all the interfaces of the first port are connected to in-
terfaces of the second port (and reciprocally). Thus, port connections make the
building process more abstract (port-to-port connections) and more efficient (no
useless connections). In this example, the Money Dialogue primitive port from
the Client component is connected to the Money Dialogue primitive port from
the ATM component.

Composite ports are composed of other ports. A composite port expresses a
constraint to connect a set of interfaces at the same time but possibly to different
components. In Figure 2, the ATM component has a composite port which is
composed of the two Money Dialogue and Money Transaction primitive ports.

Like a designer has to do with protocols, ports have to be manually added to
document the design of components; however, we are currently working on their
automatic generation from behavior protocols.

Completeness of an Assembly as Local Coherence of its Components. Calculating
the completeness of an already built component assembly is of no interest in an
incremental building approach. Our idea is to better consider a local property of
components. We call this property coherence and have shown [24] that it is a
necessary condition for validity. Intuitively, we can see that when all components
of an assembly are coherent, the assembly is complete. A component is said to
be coherent if all its composite ports are and a composite port is coherent if its
primitive ports are connected in a coherent way (see below).

More formally, completeness can be described after setting some preliminary
definitions.

– An interface is characterized by a set of operations.



Fig. 2. Example of components with primitive and composite ports

– We define a component C as a quadruple:

C = (PrvC ,ReqC ,PrimC ,CompC )

PrvC is the set of C ’s provided interfaces and ReqC its set of required in-
terfaces. PrimC is the set of C ’s primitives ports and CompC its set of
composite ports.

– We denote by IntC = PrvC ∪ ReqC the whole set of C ’s interfaces, and
PortsC = PrimC ∪ CompC the whole set of C ’s ports.

– A primitive port ρ is a set of interfaces. For any primitive port ρ of C ,
ρ ⊆ IntC . We denote by ρ̂ the fact that, with respect to a set of components,
ρ is connected—i.e., any required (resp. provided) interface of ρ is correctly
linked with a provided (resp. required) interface of another (primitive) port.

– A composite port γ of C is a set of ports, primitives or composites, from
C .

– Let γ ∈ CompC be a composite port of C . We define PrimPorts∗(γ), resp.
CompPorts∗(γ), as the set of primitive, resp. composite, ports that are di-
rectly or indirectly contained in γ:

PrimPorts∗(γ) = {ρ ∈ γ ∩ PrimC} ∪
⋃

γ′∈γ∩CompC

PrimPorts∗(γ′)

CompPorts∗(γ) = {γ′ ∈ γ ∩ CompC} ∪
⋃

γ′∈γ∩CompC

CompPorts∗(γ′)



– We denote γ̂ when all primitive ports contained in γ are connected6:

γ̂ = ∀ ρ ∈ PrimPorts∗(γ) · ρ̂

– We define a relation Unrelated between two different composite ports γ and
γ′ of CompC , denoting that neither port is directly or indirectly composed
of the other:

Unrelated(γ, γ′) = γ 6= γ′ ∧ γ /∈ CompPorts∗(γ′) ∧ γ′ /∈ CompPorts∗(γ)

– Let γ ∈ CompC be a composite port. Shared(γ) is the set of primitive ports
shared by γ and by another unrelated composite port of C :

Shared(γ) = {ρ ∈ PrimPorts∗(γ) |
∃ γ′ ∈ CompC ·Unrelated(γ′, γ) ∧ ρ ∈ PrimPorts∗(γ′)}

To determine the completeness of an assembly, we need to know if the inter-
faces that must be connected are indeed connected. The main idea is to check the
coherence of each composite port. Two cases must be checked: when the com-
posite port does not share any primitive ports with another unrelated composite
port and when it does share some primitive ports.

Let us now define the coherence of a composite port. Given a composite
port γ, three mutually exclusive cases are possible for γ to be coherent:

1. All its primitive ports are connected.
2. None of its primitive ports is connected.
3. Some, but not all, of its primitive ports are connected. In this case, γ can

still be coherent if it shares some port with another unrelated composite
port (of the same component) which is itself entirely connected. Indeed,
sharing of primitive ports represents alternative connection possibilities [6].
A partially connected composite port can represent a role which is useless
for the assembly as soon as its shared primitive ports are connected in the
context of another (significant) composite port.

– Port γ is coherent if the following holds, where ρ is restricted to primitive
ports of γ:

⊕


∀ ρ ∈ PrimPorts∗(γ) · ρ̂ (which is equivalent to γ̂)
∀ ρ ∈ PrimPorts∗(γ) · ¬ρ̂

∧


∀ ρ ∈ Shared(γ) ·

ρ̂ ⇒ ∃ γ′ ∈ CompC ·Unrelated(γ, γ′) ∧ ρ ∈ PrimPorts∗(γ′) ∧ γ̂′

∀ ρ ∈ PrimPorts∗(γ) \ Shared(γ) · ¬ρ̂

– A component C is said to be coherent if all its composite ports are coherent:

∀ γ ∈ CompC · γ is coherent

– An assembly of components is said to be complete if i) all the primitive
ports which represent functional objectives are connected; ii) all its compo-
nents are coherent.

6 As in VDM [27] and B [28], “·” is used to separate the (typed) variable introduced
by the quantifier and the associated predicate.



Building Complete Component Assemblies. This coherence property allows us to
concentrate on a local property of composite ports which is easier to include in
an iterative assembly process. The principle of the automatic assembly process
(detailed in [6]) is to try and connect all the ports representing a functional
objective and iteratively discover and try to fulfill new connection needs. This
process has been implemented as the searching of a construction tree using a
depth-first policy. Backtracking is used to explore all the alternate construction
paths (alternative possible components or alternative connection choices due
to composite port intersections). This complete exploration of the construction
tree is used to guarantee that any possible solution is always found. Furthermore,
optimization strategies and heuristics have been added for the traversal of the
construction space. The use of ports, and particularly of composite ports, is
prominent in our approach: as they express the local dependencies that exist
between interfaces, ports provide a simple means to evaluate the completeness
of an architecture. As a result, the building algorithm provides a set of interesting
complete architectures. Since architecture completeness is a necessary condition
for architecture validity, the resulting set of complete architectures thus provides
a reduced search space on which classical correctness checkers such as [5] are
finally used on few selected assemblies.

3.2 Flexible Component Substitution using the Automatic Building
Process

To react to the dynamic removal of a software component, we propose a two
step process that allows a flexible replacement of the missing component:

1. analyze the assembly from which the component has been removed and re-
move the now useless (dead) components,

2. consider the incomplete component assembly as an intermediate result of
our iterative building algorithm and therefore run the building algorithm on
this incomplete assembly to re-build a complete assembly.

Removing the Dead Components. When a component has been removed from a
complete assembly, there are parts of the assembly that become useless. Indeed,
some of the components and connections in the original assembly might have
been there to fulfill needs of the removed component. To determine which parts
of the assembly have become useless, let us define a graph which provides an
abstract view of the assembly.

An assembly can be represented as a graph where each node represents a
component and each edge represents a connection between two (primitive) ports
of two of its components. We also distinguish two kinds of components: those
which fulfill a functional objective—i.e., the components which contain a port
which contains an interface which contains a functional objective—and those
which do not (cf. Figure 3).

An assembly A can then be seen as a graph along with a set of functional
objectives:

A = (GA,FOA)



Fig. 3. An assembly can be seen as an abstract graph (a) and divided in two sets of
connected components when a component has been removed (b)

Here, GA = (CmpsA,ConnsA) is a graph, with CmpsA the set of nodes—
each node being a component, ConnsA the set of edges—each edge indicating
the existence of some primitive port connection between the components, and
FOA ⊆

⋃
C∈CmpsA

PrimC the set of primitive ports that contain some functional
objectives7.

If we consider the graph that results from the removal of the node repre-
senting the removed component, it is possible to partition it in two parts: the
connected components8 that have at least a node which contains a functional
objective and the connected components that have no node that contains a func-
tional objective. The second part of the graph is no longer useful because the
components of this part of the graph were not in the assembly to fulfill func-
tional objectives but to fulfill the needs of the removed component. Removing
this part of the graph amounts to removing now useless parts of the assembly
before trying to re-build the missing part with new components and connections.

Let A = (GA,FOA) be an assembly and let C ∈ CmpsA be the component
to remove. We define HA,C as the graph GA from which we removed compo-
nent C and all the edges (denoted by ConnsC ) corresponding to primitive port
connections between C and another component of GA:

HA,C = (CmpsA \ {C},ConnsA \ ConnsC )

We define LA,C the live connected components of HA,C as the graph com-
posed of all the connected components of HA,C that have at least a node which
contains a functional objective.

We also define DA,C the dead connected components of HA,C as the graph
composed of all the connected components of HA,C that have no node which
contains a functional objective.

7 Recall that a functional objective is simply an operation defined in one of the pro-
vided interfaces.

8 In this subsection of the paper, connected component refers to a subgraph that is
connected, meaning that there exists a path between any of its two nodes.



Let us just notice that:

HA,C = LA,C ∪ DA,C

Figure 3 illustrates the definitions of LA,C and DA,C . When a component is
removed from the assembly, it is possible to remove all the components which
do not participate any more to the completeness. Components from the dead
connected components DA,C can be removed from the assembly because they
only participated to the coherence of the removed component.

Removing the dead components is a necessary step because keeping useless
components add useless dependencies that make the resulting assembly consid-
erably bigger thus complicating the building process, making the validity checks
more difficult and making the assembly more subject to failures, less open for
extensions, etc. Let us just also note that the components in DA,C are dead
components but that there still might be useless components in LA,C (those we
keep). We are thinking of future improvements on the detection of dead compo-
nents that would better exploit the protocols.

3.3 Re-building the Removed Part from the Architecture

Once the dead components have been removed from the component assembly,
the assembly contains all the components necessary to ensure completeness but
one (the removed component) and its dependent components. Some of the de-
pendencies of the remaining components are not yet satisfied. The issue is to find
a component (like other systems do) or a series of assembled components that
can fulfill the unsatisfied dependencies as the removed component did. We as-
sume that it is quite unlikely that there exists a component that exactly matches
the role the removed component had in the assembly. It is more likely (more flex-
ible) that we have the possibility of replacing the removed component by a set
of assembled components that, together, can replace the removed component.

In order to do so, we use the automatic building process presented in Sec-
tion 3.1. The partial assembly in LA,C is the starting point. It is considered as an
intermediate result of the global building process. It is not complete yet: there
still exist unsatisfied dependencies that were fulfilled by the removed component.
The building process we described above is used to complete the architecture.

Evolution Scenario. On our ATM example, Figure 4 (a) represents the graph
corresponding to the example of Figure 2. The Client node represents the Client
component which contains a functional objective. The other nodes (MemberBank ,
ATM and CentralBank) represent components which do not contain any func-
tional objective. Figure 4 (b) shows that the partial component assembly from
LATMexample,MemberBank is not complete because the ATM component has be-
come incoherent after the MemberBank component and the consequently dead
components (DATMexample,MemberBank = {CentralBank}) have been removed.
To complete the assembly, new components must be added. Figure 4 (c) illus-
trates the result of this re-building process: The IndependentBank component



Fig. 4. Evolution scenario on the ATM example

is connected to the BankIS component and they both replace the components
that had been removed to complete the ATM example assembly.

Figure 5 details the resulting architecture. In this example, the component
to remove is the MemberBank component. When the MemberBank component
is removed, completeness of the architecture is lost. Indeed, the ATM compo-
nent is not locally coherent any more. Its Money Withdraw composite port is
not coherent because the primitive port Money Transaction is not connected
and the Money Dialogue primitive port is connected. The CentralBank compo-
nent constitutes the DATMexample,MemberBank graph and can also be removed.
Completeness is researched by selecting and connecting new components. In this
example, an IndependentBank component is connected to the ATM component
through its Money Transaction primitive port. At this step, the assembly is
not yet complete because all the components are not yet coherent. Indeed, the
IndependentBank component is not coherent because its Manage withdraw com-
posite port is not coherent. Another component is thus added to the assembly:
the BankIS component is connected to the IndependentBank component through
its Request Data primitive port. At that point, the assembly is complete. One
can consider that the removed component has been replaced by an assembly
composed of the IndependentBank and the BankIS components9.

3.4 Implementation and Experimentation

The two processes presented here (automatic component assembly building and
dynamic substitution after a component removal) have both been implemented
as an extension of the open-source Julia implementation10 of the Fractal com-
ponent model [3]. Our dynamic reconfiguration approach has been tested in the
same environment we used to test the building process. To do so, we randomly
generated the interfaces and ports of generated components, randomly choose
functional objectives and then run the building process in order to build full
complete assemblies [6]. For example, experiments were run with a library of 38

9 In the example, it is a coincidence that the total number of removed components
equals the number of components that are used to complete the assembly.

10 http://www.objectweb.org



Fig. 5. Dynamic reconfiguration of the assembly

generated components. The search space contained more than 325 000 complete
assemblies (complete search stopped after 15 hours). Among those complete as-
semblies, the largest ones have 48 connections and the smallest ones 18 connec-
tions. As a comparison, our optimized building algorithm finds the only minimal
architecture composed of 7 connections in less than a second. To test our solu-
tion for evolution, a randomly chosen component was removed from a complete
assembly and the substitution process was then triggered considering that the
removed component was not available anymore. Those experiments showed that
our solution provides alternative substitution possibilities (compared to existing
one-to-one substitution mechanisms) thus is more flexible because it does not de-
pend on the presence of a component that is able to exactly match the role of the
removed one. In these experiments, in most cases, the result of substitution was
a one-to-many substitution. We also noticed that the complexity of the mech-
anism exposed here is not higher than the complexity of the complete building
process (which was efficient thanks to optimization strategies and heuristics).

4 Conclusion

The contribution of this paper is double. Firstly, we present an innovative so-
lution for the dynamic replacement of a component from an assembly. This
solution is not a component-to-component substitution but allows replacing a
single component by a whole set of linked components while guaranteeing there
is no functional regression. Secondly, we propose a property to identify useless
components that can be removed. The advantage of this approach is that it
can increase the number of reconfiguration possibilities by being less constrain-



ing. We implemented our solution as an extension of an existing open source
implementation of the Fractal component model and successfully tested it on
generated components.

The main limitations of this work is that we have not been able to try it
on real components11 but our experimentation framework allowed us to validate
our ideas. Another limitation to our approach is that ports need to be added
to the components in order to use them in our mechanisms. We believe this
limitation is not very strong because ports can be provided by the component
designer as an abstract view of the behavioral roles of the components that doc-
ument the components, generated from protocols (in a design for reuse process)
or abstracted from running assemblies that provide execution contexts for the
components (in a design by reuse approach).

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

2. Plásil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for component trad-
ing and dynamic updating. In: Proc. of the Int. Conf. on Configurable Distributed
Systems, Washington, DC, USA, IEEE Computer Society (1998) 43–52

3. Bruneton, E., Coupaye, T., Stefani, J.: Fractal specification - v 2.0.3 (2004) http:
//fractal.objectweb.org/specification/index.html.

4. George, B., Fleurquin, R., Sadou, S.: A substitution model for software compo-
nents. In: Proc. of the 2006 ECOOP Workshop on Quantitative Approaches on
Object-Oriented Software Engineering (QaOOSE’06), Nantes, France (2006)

5. Bures, T., Hnetynka, P., Plásil, F.: Sofa 2.0: Balancing advanced features in a
hierarchical component model. In: SERA, IEEE Computer Society (2006) 40–48

6. Desnos, N., Vauttier, S., Urtado, C., Huchard, M.: Automating the building of
software component architectures. In Volker Gruhn, F.O., ed.: Software Archi-
tecture: 3rd European Workshop on Software Architectures, Languages, Styles,
Models, Tools, and Applications (EWSA). Volume 4344 of LNCS., Springer (2006)
228–235

7. Brown, A.W., Wallnau, K.C.: The current state of CBSE. IEEE Software 15(5)
(1998) 37–46

8. Crnkovic, I.: Component-based software engineering—new challenges in software
development. Software Focus (2001)

9. Dijkman, R.M., Almeida, J.P.A., Quartel, D.A.: Verifying the correctness of
component-based applications that support business processes. In Crnkovic, I.,
Schmidt, H., Stafford, J., Wallnau, K., eds.: Proc. of the 6th Workshop on CBSE:
Automated Reasoning and Prediction, Portland, Oregon, USA (2003) 43–48

10. Medvidovic, N., N.Taylor, R.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1) (2000)
70–93

11 It is not yet possible to find real component bases that are already documented with
protocols. We believe that research work aiming at facilitating component reuse
will encourage the building of such component repositories and provide us better
experimentation frameworks in the future.



11. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static checking of system behaviors
using derived component assumptions. ACM Trans. Softw. Eng. Methodol. 9(3)
(2000) 239–272

12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. of the 8th European
software engineering conference, New York, NY, USA, ACM Press (2001) 109–120

13. Mach, M., Plásil, F., Kofron, J.: Behavior protocols verification: Fighting state
explosion. International Journal of Computer and Information Science (2005)

14. Wallnau, K.C.: Volume III: A technology for predictable assembly from certifiable
components (pacc). Technical Report CMU/SEI-2003-TR-009, Carnegie Mellon
University, Pittsburgh, OH, USA (2003)

15. Adamek, J., Plásil, F.: Partial bindings of components - any harm? In: APSEC ’04:
Proc. of the 11th Asia-Pacific Software Engineering Conference, Washington, DC,
USA, IEEE Computer Society (2004) 632–639

16. Reussner, R.H., Poernomo, I.H., Schmidt, H.W.: Reasoning on software archi-
tectures with contractually specified components. In Cechich, A., Piattini, M.,
Vallecillo, A., eds.: Component-Based Software Quality: Methods and Techniques.
Volume 2693 of LNCS. Springer (2003) 287–325

17. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIG-
SOFT ’96: Proc. of the 4th ACM SIGSOFT symposium on Foundations of software
engineering, New York, NY, USA, ACM Press (1996) 3–14

18. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture
to implementation. In: Proc. of ICSE, Orlando, FL, USA, ACM Press (2002)
187–197

19. Inverardi, P., Wolf, A.L.: Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE Trans. Softw. Eng. 21(4) (1995)
373–386

20. Allen, R.J.: A formal approach to software architecture. PhD thesis, Carnegie
Mellon, School of Computer Science (1997) Issued as CMU Technical Report CMU-
CS-97-144.

21. Matevska-Meyer, J., Hasselbring, W., Reussner., R.H.: A software architecture
description supporting component deployment and system runtime reconfiguration.
In: Proc. of the 9th Int. Workshop on Component-Oriented Programming (WCOP
’04), Oslo, Norway (2004)

22. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software
evolution. In: Intl. Conf. on Software Engineering, Kyoto, Japan (1998)

23. Brada, P.: Component change and version identification in SOFA. In: SOFSEM ’99:
Proc. of the 26th Conf. on Current Trends in Theory and Practice of Informatics,
London, UK, Springer-Verlag (1999) 360–368

24. Desnos, N., Urtado, C., Vauttier, S., Huchard, M.: Helping the architect build
component-based architectures. In Rousseau, R., Urtado, C., Vauttier, S., eds.:
Proc. of the 12th french speaking conference on Languages and Models with Objets
(LMO2006), Nı̂mes, France, Hermès (2006) 37–52 (in french).

25. OMG: Unified modeling language: Superstructure, version 2.0 (2002) http://www.
omg.org/uml.

26. Lobo, A.E., de C. Guerra, P.A., Filho, F.C., Rubira, C.M.F.: A systematic ap-
proach for the evolution of reusable software components. In: ECOOP’2005 Work-
shop on Architecture-Centric Evolution, Glasgow (2005)

27. Jones, C.: Systematic Software Development using VDM (2nd Edition). Prentice-
Hall (1990)

28. Abrial, J.R.: The B-Book, Assigning programs to meanings. Cambridge University
Press (1996)


